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Abstract

The mismatch negativity (MMN) is a differential brain response to violations of learned regularities. It has been used to
demonstrate that the brain learns the statistical structure of its environment and predicts future sensory inputs. However,
the algorithmic nature of these computations and the underlying neurobiological implementation remain controversial.
This article introduces a mathematical framework with which competing ideas about the computational quantities indexed
by MMN responses can be formalized and tested against single-trial EEG data. This framework was applied to five major
theories of the MMN, comparing their ability to explain trial-by-trial changes in MMN amplitude. Three of these theories
(predictive coding, model adjustment, and novelty detection) were formalized by linking the MMN to different
manifestations of the same computational mechanism: approximate Bayesian inference according to the free-energy
principle. We thereby propose a unifying view on three distinct theories of the MMN. The relative plausibility of each theory
was assessed against empirical single-trial MMN amplitudes acquired from eight healthy volunteers in a roving oddball
experiment. Models based on the free-energy principle provided more plausible explanations of trial-by-trial changes in
MMN amplitude than models representing the two more traditional theories (change detection and adaptation). Our results
suggest that the MMN reflects approximate Bayesian learning of sensory regularities, and that the MMN-generating process
adjusts a probabilistic model of the environment according to prediction errors.
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Introduction

A key theme of contemporary neuroscience is the notion that

the brain embodies a generative model of the environment,

enabling inference on the causes of sensory inputs and predicting

future events. This is also known as the ‘‘Bayesian brain

hypothesis’’ (for reviews, see [1] and [2]). This framework provides

an abstract explanation of adaptive cognition and behaviour,

which has been instantiated in schemes like predictive coding and

hierarchical Bayesian message passing [3–5], or, more recently,

the free-energy principle [2].

Experimentally, an important paradigm for testing the

implications of these theories in humans is the mismatch

negativity (MMN) paradigm [6]. In this paradigm, electrophys-

iological methods such as electroencephalography (EEG) or

magnetoencephalography (MEG) are used to measure event-

related ‘‘mismatch potentials’’ in response to violations of

expectancy or learned regularities. Traditionally, the MMN (cf.

Figure 1) is recorded during auditory oddball experiments or,

more recently, during ‘‘roving’’ oddball paradigms. It can be

defined operationally by subtracting the event-related potential

(ERP) elicited by standards, i.e. stimuli that are predicted by an

established regularity, from the ERP elicited by deviants, i.e. the

same stimuli when they violate the regularity. The MMN is

usually expressed most strongly at fronto-central electrodes, and

its peak latency varies between 100 and 250 milliseconds after

deviance onset, depending on the specific paradigm and type of

regularity that is violated [7,8]. Previous EEG and fMRI studies

suggest that the MMN originates from temporal generators (A1

and STG) and a prefrontal generator in the inferior frontal gyrus

[9,10].

A major research theme has been the search for models of

the neurophysiological and computational processes that

underlie the MMN [7,11,12]. Such models would contribute

to a better understanding of statistical learning in the brain and

the prediction of future events. However, the neurocomputa-

tional processes that generate the mismatch negativity are still

subject to debate [7,13–15]. Over the years, five major

hypotheses have been formulated, which we compare in this

article:

1. Change Detection Hypothesis: The MMN reflects the detection of a

local physical change in the sensory input [16,17].

2. Adaptation Hypothesis: The MMN reflects the difference in

stimulus-evoked activity between adapted and non-adapted

sensory neurons [13,18].
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3. Model Adjustment Hypothesis: The auditory cortex maintains a

model of the acoustic environment, and stimulus-induced

updates of this model are indexed by the MMN [19,20].

4. Novelty Detection Hypothesis: The MMN reflects the degree to

which the current event is surprising (novel) [21,22]. An event

is surprising, if its occurrence violates a (probabilistic)

prediction. Surprise is different from change: when a change

occurs predictably in a given context, its absence will be more

surprising than its presence. Surprise is an undirected quantity;

this distinguishes it from prediction error (see below).

5. Prediction Error Hypothesis: The cortex implements approximate

Bayesian inference using predictive coding. The MMN reflects

the neural activity encoding the prediction errors that drive this

process; i.e., differences between actual and predicted inputs

[3,7]. In contrast to surprise, a prediction error indicates the

direction in which the event deviated from the brain’s

prediction.

So far there has been no objective procedure to conclude which

MMN theory is best supported by a given dataset, because most

theories of the MMN are of a qualitative nature and do not make

quantitative predictions. Furthermore, the inferences that could be

drawn were limited by the averaging inherent to standard ERP

analysis: this destroys any information about the temporal

dynamics of learning. The first goal of this study was to overcome

both limitations by providing a modelling framework with which

competing MMN theories can be formalized and objectively

compared against one another by their capacity to explain single-

trial MMN amplitudes. Here, the explanandum was not just the

mismatch negativity per se, but also how its single-trial amplitude

changes as the subject learns statistical regularities during the

successive presentation of stimuli. The mismatch response to the

same stimulus differs depending on the history of all preceding

stimuli, and our models should be able to predict these changes.

Figure 1. Data acquisition: EEG layout, pre-defined electrodes, sample waveform, and stimulus sequences. The left panel shows the
layout of the 128 electrodes of the EEG setup. The blue circles highlight the pre-defined fronto-central electrodes. The upper right panel shows a
difference wave containing the MMN. The lower right panel illustrates the structure of the tone sequences presented in the roving oddball
experiment. Tones are shown as black disks whose vertical position indicates sound frequency. The first tone presented after a train of tones of a
different frequency is called a deviant (D).
doi:10.1371/journal.pcbi.1002911.g001

Author Summary

The ability to predict one’s environment is crucial for
adaptive and proactive behaviour. It requires learning a
mental model that captures the environment’s statistical
regularities. A process of this sort is thought to be reflected
by the mismatch negativity (MMN) potential, a non-
invasive electrophysiological measure of the neural
response to regularity violation by sensory stimuli.
However, the exact computational processes reflected by
the MMN remain a matter of debate. We developed a
modelling framework in which competing hypotheses
about these processes can be objectively compared by
their ability to predict single-trial MMN amplitudes. We
applied this framework to formalize five major MMN
theories and propose a unifying view on three distinct
theories which explain the MMN as a reflection of
prediction errors, model adjustment, and novelty detec-
tion, respectively. We assessed our models of the five
theories with EEG data from eight healthy volunteers. Our
results are consistent with the idea that the MMN arises
from prediction error driven adjustments of a probabilistic
mental model of the environment.

Modelling the Mismatch Negativity
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The ensuing modelling of single-trial MMN amplitudes and their

progressive changes represents a novel approach, which empha-

sizes the sensory learning on which the MMN rests. Two related

studies using a similar approach recently suggested that single-trial

MMN and P300 amplitudes reflect the trial-wise degree of

Bayesian and Shannon surprise, respectively [23,24]. Here, we

extend this trial-wise approach and formalize the processes

postulated by the five MMN theories introduced above in terms

of specific process models; these are then subjected to Bayesian

model comparison in order to assess how well each of them

explains the variability of trial-wise MMN amplitudes. This

formulation of detailed and quantitative models representing the

5 major contemporary MMN theories constituted the second goal

of this paper. In constructing these models, the third goal was to

show that the prediction error, model adjustment, and novelty

detection theories of the MMN can be unified. Concretely, we

propose that prediction errors, model adjustments and novelty are

different manifestations of a common underlying process, namely

variational free-energy minimization during perceptual inference

and learning [2].

This paper is structured as follows. The Models and Methods

section describes our roving oddball experiment, data acquisition

and pre-processing, the extraction of the single-trial MMN

amplitudes used in the subsequent analysis, as well as our

modelling framework and its application to formalizing each of

five MMN theories by a model family (a set of models with a

shared essence). The two final sections present and discuss the

results obtained by fitting the ensuing models to empirical MMN

responses and applying Bayesian model comparison to assess the

relative plausibility of individual models and MMN theories

(model families).

Models and Methods

Roving paradigm and event related potentials
The empirical data used in this study comprised trial-wise

mismatch responses, acquired during a roving oddball experiment

with electroencephalography (EEG) from eight healthy subjects in

a previously published study [25,26]. Twelve healthy volunteers

(aged 24–34, 4 female) listened passively to a structured sequence

of 1600 pure sine tones adapted from [27]. Subjects sat in front of

a computer screen and were instructed to ignore the tones and

press a button whenever there was a change in the luminance of

the fixation cross. The structure of the stimulus sequences is

illustrated in Figure 1 (lower right panel). For each subject, the

stimulus sequence was structured into approx. 250 trains of a

varying number of identical tones, each of which was followed by a

train of tones with a different frequency. In other words, the same

tone was repeated several times and then changed to a new tone.

This lead to two types of events: tone repetition and tone change.

The probabilities of trains with zero to ten tone repetitions were

2.5%, 2.5%, 3.75%, 3.75%, 12.5%, 12.5%, 12.5%, 12.5%,

12.5%, 12.5%, and 12.5%. The tone frequencies were

500 Hz, 550 Hz, � � � ,750 Hz,800 Hz, and they occurred with

equal probability in a pseudorandom order. Tones lasted for

70 ms and were presented at a constant stimulus onset asynchrony

of 500 ms for 15 minutes using headphones.

In this study, we quantified the MMN by subtracting the

average of waveforms elicited by the sixth presentation of a tone

(the standard) from the waveform elicited by its first presentation

(the deviant). In other words, we compared responses to physically

identical stimuli presented in different contexts (i.e. after different

stimulus trains). This avoids confounding factors that would have

arisen had we used a classical oddball or mismatch negativity

paradigm [28] for our single-trial analysis (e.g., differences in

physical stimulus properties between standards and deviants and

differences in the degree to which the standard was expected [27]).

Data acquisition and pre-processing. The data were

acquired using a Biosemi EEG setup with 128 electrodes. Data

pre-processing was performed with SPM5. Artefact correction was

performed by thresholding all channels at 80mV. Two subjects

were excluded due to artefacts (as in the original study [25]) and

two further subjects were excluded due to a low signal-to-noise

ratio or undetectable MMN (as in [26]), leaving eight subjects for

the final analysis. We selected a pre-defined set of fronto-central

electrodes based on studies that have differentiated between the

temporal and the frontal MMN subcomponent [29–33] and

analysed the potentials at these electrodes and all electrodes

located between them. Figure 1 (left panel) shows the spatial layout

of these electrodes. Subject-specific subsets of the preselected

electrodes were created by excluding those electrodes where the

expected mismatch potential could not be detected in the subject’s

average difference wave. The detection of MMN was performed

by t-tests comparing the mean potential within the time-window of

the MMN with the mean potentials in two surrounding time

windows (before and after). The critical value of each test was

chosen according to the Šidák correction such that a family-wise

error, i.e. erroneously selecting at least one channel, would occur

with a probability of less than 0:05.

Estimation of single-trial MMN amplitudes. The data

feature that we modelled is the sequence of single-trial MMN

amplitudes that has one element for each deviant trial. Each

deviant trial is characterised by the tone (frequency) and the length

of the preceding train of tone repetitions.

For each subject and each deviant trial the MMN amplitude

was estimated by applying the procedure of Mars et al. [24]

separately to all selected channels. In short, this involved:

1. For each deviant trial, subtract the ‘‘standard ERP’’ of the

presented tone (average response across all trials presenting the

tone for the sixth time in a row) from the EEG signal recorded

in that trial. This isolates the deviance-specific potential.

2. For each deviance-specific potential, subtract the average

potential in the 100 ms preceding the deviant presentation

from the ensuing response (baseline correction).

3. Estimate each subject’s MMN peak latency by the minimum

point of his/her average difference wave (average of deviance-

specific potentials across deviant trials and selected frontal

electrodes) between 100 and 200 ms after stimulus onset [25].

4. Estimate each subject’s trial-wise MMN amplitudes by

averaging his/her deviance-specific potentials over a +70 ms
time window centered at his/her MMN peak latency. The

window’s width (+70 ms) was chosen to match the duration of

the MMN.

A framework for modelling single-trial responses
This section introduces our modelling framework for single-trial

responses. In terms of notation, we denote vectors by lower case

bold letters, matrices by upper case bold letters, and scalars and

functions by lower case italics (except for variables like the free-

energy F for which there are notational conventions in the

literature). Vector and matrix elements can be scalars, vectors, or

matrices, and they are referred to via subscripts (e.g., ut denotes

the tth element of vector u, and Tk,j denotes the jth element of the

kth row of matrix T).

Models of single-trial responses can be cast in a general dynamic

state-space framework that models the measurements y as

Modelling the Mismatch Negativity
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manifestations of internal states x which cannot be observed

directly. The internal states evolve according to an evolution

function f mapping an internal state and some sensory input u to

the ensuing state. The internal states x generate neurophysiolog-

ical signals in response to sensory input according to a response

function g. These are scaled and combined according to a linear

observation model with regression coefficients b and corrupted by

Gaussian measurement noise e. Both the evolution function and

the response function may depend on parameters h and have the

following general form:

xtz1~f(xt,ut; h)

yt~g(xt,ut; h)bzet, et*N (0,s2
e )

ð1Þ

Together with the prior density p(h), the evolution function and

the response function define a generative model of the measure-

ments:

M~ff,g,p(h)g ð2Þ

This framework is based on [34] and enables inferences about

(hidden) computational processes and representations from neuro-

physiological measurements. It is particularly powerful in conjunction

with model comparison methods such as random-effects Bayesian

model selection [35] and model space partitioning (i.e., inference on

model families [36]). Given competing models of learning and

inference, Bayesian model inversion and comparison can be used to

infer the nature of the underlying process and its relationship to the

measured responses. The resulting posterior model probabilities

assess each model’s relative explanatory power in a way that balances

fit and complexity such that the comparison between any two models

is valid irrespective of their relative complexity.

Computational models of the mismatch negativity
We applied the framework introduced in the previous section to

formalize five competing theories of the MMN by formulating

thirteen models (Mi,1ƒiƒ13) of measured trial-wise MMN

amplitudes y elicited by tone sequences u. Each of the five

theories summarized in the introduction (predictive coding,

novelty detection, model adjustment, change detection, and

adaptation) explains the MMN as originating from a particular

process f operating on some neural state or cognitive represen-

tation x. We modelled these processes and representations as well

as the resulting neural responses g(x,u; h) which we interpret as

local field potentials. Since the EEG signal is a linear mixture of

local field potentials, we use a general linear model to map

predicted neuronal activity to MMN amplitude; this is expressed

by Eq. (3) where b are the unknown regression coefficients, and

the trial-wise values of g define the design matrix:

Lt~g(xt,ut; h)

y~Lbze, ei*N 0,s2
e

� � ð3Þ

Note that this is an equation for a single electrode (we generalize it

to multiple electrodes in Eq. (13)).

The 13 models M1, � � � ,M13 are derived in detail below. After

formalizing two traditional phenomenological MMN theories (the

change detection hypothesis and the adaptation hypothesis), we

formalize three current theories of the MMN using Bayesian

information processing models based on the free-energy principle.

These models assume that the brain represents probabilistic beliefs

about its environment whose evolution approximates Bayes optimal

learning and perception according to the free-energy principle [37].

The predictive coding, the model adjustment, and the novelty

detection theories were formalized by extending this core assump-

tion by response models g of different neural sub-processes of the

belief updates prescribed by the free-energy principle. Overall, our

model space is structured hierarchically, as shown in Figure 2. First,

our 13 models can be grouped into five model families that

correspond to the five MMN theories introduced above: change

detection (famCD), adaptation (famadaptation), prediction error

(famPE), novelty (famnovelty), and model adjustment

(famadjustment). The models within each family assume the same

internal representation and the same evolution function, but differ

in their response functions. Second, these model families can be

grouped into two super-families: phenomenological models

(fampheno~famCD|famadaptation) and information processing

models (famFEP~famPE|famnovelty|famadjustment). The latter

are formulated within a Meta-Bayesian framework [34] and build

upon the free-energy principle [37]. Table 1 summarizes all

computational models, and the notation used to describe them is

summarized in Table 2.

Change detection hypothesis (Models M1-M3). A classical

interpretation of the MMN is the change detection hypothesis, which

assumes that the MMN indexes local physical changes in the

sensory input [16,17]. This hypothesis comes in several flavours,

each of which leads to different quantitative predictions.

1. The MMN indexes only whether or not a change has occurred.

2. The MMN indexes the absolute value of the change in a

physical property of the sensory input (i.e., unsigned change).

3. The MMN indexes the difference in a physical property

between the deviant and its predecessor (i.e., signed

change).

Here, the relevant physical stimulus property is the log-

frequency of a pure sine tone. In our framework, the general

notion of change detection can be formalized by assuming a one-

dimensional internal representation xt of previous sensory input:

xtz1~f(xt,ut)~ut ð4Þ

This internal representation x and evolution function f are

shared by all three variants of the change detection hypothesis

summarised above. Their divergent interpretations simply rest on

what trial-wise MMN amplitudes depend on; this was expressed

by three different response functions:

M1 : g1(xt,ut)~
1, if ut=xt

0, if ut~xt

(

M2 : g2(xt,ut)~ Dut{xtD 1ð Þ

M3 : g3(xt,ut)~ ut{xt 1ð Þ

ð5Þ

Notably, M1 can be considered a null model, since, in contrast to

all other models in this paper, it postulates that there is no trial-

by-trial variation in MMN amplitude. It predicts the same MMN

amplitude for all modelled trials (and therefore does not include

an additional constant, cf. Eq. (5)). The second and third model

assume that MMN amplitude increases linearly with the change

in log-frequency (cf. [22]), but differ with regard to whether or

not this effect depends on the sign of the difference. Altogether,

these three models constitute the ‘‘change detection’’ family

famCD~fM1,M2,M3g (see Figure 2).

Modelling the Mismatch Negativity
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Adaptation hypothesis (Model M4). Neural adaptation is

the process due to which the neural response to a stimulus or

feature decreases with its repeated or prolonged presentation.

According to the adaptation hypothesis, the MMN elicited by a

change in sound frequency reflects the difference in the

responsiveness of adapted and non-adapted frequency-specific

neurons in auditory cortex [12]. For instance, it has been

suggested that the MMN results from a delay and an attenuation

of the N1 component due to neuronal adaptation [18]. Invasive

recording studies have shown that the firing rate of neurons

selective for the standard frequency decreases monotonically with

the number of standard repetitions [38,39], and that this

adaptation is expressed at multiple time scales: from hundreds of

milliseconds to tens of seconds. These adaptation effects could

result from mechanisms at the level of single neurons and synapses;

e.g. synaptic depression [40] or slow after-hyperpolarizing

potassium currents [41]. Alternative explanations include network

mechanisms such as cascades of depressing synapses [42] or

predictive coding; where adaptation is mediated by local

connections that control the gain of error units [26].

Here, we adopted a phenomenological description of adaptation

that is agnostic to the exact underlying mechanism. We modelled

seven populations of frequency-selective neurons, each of which is

responsive to exactly one of the seven log-frequencies n1, � � � ,n7

presented in our roving oddball experiment. The internal states are

therefore represented by a seven-dimensional vector

xt~ x1,t . . . x7,tð Þ encoding the current responsiveness of each

neural population to its preferred stimulus frequency. Following

[38], we model the responsiveness of each frequency-specific

population using two exponential processes. Each population’s

responsiveness decays and recovers exponentially with the number

of presentations of its preferred frequency and non-preferred

frequencies, respectively. This is captured by the adaptation model’s

evolution function

xr,tz1~fadapt(xr,t,ut; h)~
xr,t exp({1=tadapt) if vr~ut

1{(1{xr,t) exp({1=trecover) else

�
ð6Þ

where the free parameters h~ftadapt,trecoverg capture the time scales at

which the adaptation and the recovery process operate and are

allowed to vary across subjects. These parameters were assigned

uniform prior distributions covering the full range of plausible values

reported in [38], i.e. p(tadapt)~p(trecover)~Uniform(½0:1,200�).
This model predicts that the MMN amplitude is proportional to

the responsiveness of the stimulus-driven neuronal population.

Therefore, the response function simply reads out the appropriate

state value and combines it with a constant:

M4 : g4(xt,ut)~ xp,t 1ð Þ with p such that vp~ut ð7Þ

In summary, this generative model M4 explains trial-wise MMN

amplitudes in terms of two processes: adaptation and recovery

from adaptation. This model constitutes the ‘‘adaptation’’ model

family famadapt~fM4g of our model space (see Figure 2).

Figure 2. Hierarchical structure of the model space: models, theories, and frameworks. The MMN models developed in this article can be
organized into a tree structure. The leaves at the bottom of the tree represent individual models of trial-wise MMN amplitudes, and the nodes above
represent sets of models (model families). The nodes at the third level represent modelling frameworks. Three theories (the prediction error
hypothesis, the novelty detection hypothesis, and model adjustment hypothesis) were formalized under the framework of the free-energy principle
(famFEP). This framework explicitly models information processing, which makes it fundamentally different from phenomenological explanations
(fampheno), such as change detection and adaptation models.
doi:10.1371/journal.pcbi.1002911.g002

Modelling the Mismatch Negativity
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Predictive coding, model adjustment, and novelty

detection. Predictive coding, model adjustment, and novelty detection

are formalized by models based on the free-energy principle

(M5, � � � ,M13). These models explain the MMN as an electro-

physiological manifestation of the neural mechanisms that

approximate Bayes-optimal perception and learning of sensory

regularities. Figure 3 illustrates that these models are structured

into two components: a Bayesian observer and a response

function. This instantiates our general dynamic state-space

framework: The internal states x represent the Bayesian observer’s

probabilistic beliefs, and the response functions map belief updates

to neural responses. The Bayesian observer is shared by all

information processing models; it is their response functions

g5, � � � ,g13 (summarized in Table 1) that differentiate them into

models of predictive coding, novelty detection, or model adjust-

ment. As shown in Figure 3, the beliefs of the Bayesian observer

evolve according to an evolution function that depends on the

observer’s mental model. The following two subsections introduce

this mental model and the evolution function respectively, and the

third subsection introduces the response functions. The notation

used to describe the Bayesian observer model is summarized in

Table 2.

The Bayesian observer’s mental model of tone

sequences. We approximate the subjects’ mental model of

tone sequences by an extension of the hidden Markov model; see

Figure 3. This model captures the general principle that the states

of the environment (z) are unobservable and have to be inferred

from sensory inputs (u). Concretely, on each trial of the roving

oddball experiment, the auditory cortex receives sensory input ut

that can be thought of as the sound frequency represented on a

logarithmic scale [43–45] by neural activity in the auditory

thalamus (medial geniculate nucleus, MGN), a key relay station of

the ascending auditory pathway which provides input to the

primary auditory cortex [46].

In our model the hidden environmental state zt[f1,:::,cg
represents the category of the tth tone, e.g. which musical note it

instantiates (note that z is an environmental event and thus a cause

of sensory input; whereas x is an internal state of the brain which

we will assume to encode the sufficient statistics of the approximate

posterior q(z,q); see below). Each tone category has a character-

istic log-frequency vi for i[f1, � � � ,cgð Þ, but sounds sampled from

it deviate randomly. We assume that the subjects’ initial tone

categories approximately correspond to musical notes, because for

pure tones subjects’ auditory representations are likely to be

shaped by musical experience, and pitch perception becomes

increasingly logarithmic for frequencies above 500 Hz [47]. Since

the tones presented in the experiment range from 500 to 800 Hz,

we simulated categories corresponding to the musical notes from

B4 (493.88 Hz) to Ab5 (830.61 Hz). As a result, the mental model

contains 10 tone categories (c~10), and the learner updates its

estimates of their characteristic frequencies based on sensory input.

While the relationship between the perceived frequency (pitch)

of complex sounds and their physical properties is complicated

[48], the log-frequency of pure sine tones is accurately encoded by

the cochlea [49]. Thus, for pure sine tones the log-frequency

representation of sensory data can be plausibly modelled with:

ut~vztzwt

wt*N (0,s2)
ð8Þ

where vzt is the characteristic log-frequency of the note presented

on trial t and s2 is the variance of the MGN’s representation of

tone’s log-frequency. It corresponds to the observer’s perceptual

uncertainty and was assumed to be constant and known to the

observer.

Furthermore, the temporal structure of the hidden sequence is

represented by the transition matrix T(z1:t; g,a) that captures the

Table 1. This table lists the response models of our 13 computational models of trial-wise MMN amplitudes.

Model Name Estimates generating LFPs Description

M1 : Change Detection 1
g1 :

1, if ut=xt

0, if ut~xt

�
categorical response: change or no change

M2 : Change Detection 2 g2 : Dut{xt D absolute change in log-frequency

M3 : Change Detection 3 g3 : ut{xt change in log-frequency

M4 : Adaptation 1 g4 : xp,t(ut) with p such that vp~ut response of adapted neurons selective to the deviant

M5 : FEP, Prediction Error 1 g5 : s{2:(ut{
P

j xv, t(j)
:Txz, t ,j ) precision weighted prediction error (wrt. sensory inputs)

M6 : FEP, Prediction Error 2
g6 :

1{Txz, t ,xz,tz1
(xz,1:t; xg,t,xa,t)

� �P
kTxz, t ,k

:(1{Txz, t ,k)

precision weighted prediction error (wrt. tone category)

M7 : FEP, Novelty 1
g7 :

1

2
log(2ps2)z

1

2s2
ut{

X
j
xv,t(j)

:Txz, t ,j

� �2 surprise about the sensory input

M8 : FEP, Novelty 2 g8 : {ln Tk,i where k~xz,t, i~xz,tz1 surprise about tone category

M9 : FEP, Model adjustment 1 g9 : xv,tz1(xz,tz1){xv,t(xz,tz1) change in the category’s mean frequency

M10 : FEP, Model adjustment 2 g10 : xg,tz1{xg,t change in expected sequence length

M11 : FEP, Model adjustment 3 g11 : xa,tzz1 xz,t,xz,tz1ð Þ{xa,t xz,t,xz,tz1ð Þð Þ
if xz,tz1=xz,t,0 else

(absolute value of) change in conditional transition prob.

M12 : FEP, Model adjustment 4 g12 : Dxv,tzz1(xz,tz1){xv,t(xz,tz1)D absolute value of change in the category’s mean freq.

M13 : FEP, Model adjustment 5 g13 : Dxg,tz1{xg,t D absolute value of change in expected sequence length

The equations specify the trial-wise predictor variables Li(t,1). The third column explains the hypothesis formalized by each model. The mathematical notation is
explained in Table 2. In both tables the elements of vectors and matrices are sometimes referred to via indices in parentheses such as in xv,t(xz,tz1) which denotes the
element of the vector xv,t whose index is xz,tz1 . For brevity the response functions gi are written in terms of ut , xt , xtz1 , and T. This is consistent with the general state-
space framework (Eq. (1)), because xtz1 and T are fully determined by ut and xt .
doi:10.1371/journal.pcbi.1002911.t001
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distribution of the number of tone repetitions irrespective of tone

identity, and that certain transitions are more likely than others.

The former was achieved by extending the hidden Markov model

[50] such that the transition matrix can depend on the history of

the hidden states; see Section 1 in Text S1 for details. This

extension was motivated by previous MMN studies showing that

the number of standard repetitions is an important factor in

modulating the amplitude of the MMN [27,51–54]. In brief, the

transition matrix depends directly on how often the current tone

has been repeated, as well as on the expected number of tone

repetitions (g) and the conditional probabilities of the next tone

given the current tone and given that a change occurs (a). In

summary, we assume that the mental model m is defined by the

following set of assumptions about the observations u, hidden

states z and parameters q~fv,g,ag:

p(u,z,qDm)~P(z0) p(u0Dz0,q) P
T

t~1
P(ztDz1:t{1,q) p(utDzt,q)

� �
p(q; h)

P(z0)~Uniform(f1, � � � ,cg)
P(ztz1~jDzt~k,z1:t{1,g,a)~Tk,j(z1:t{1,g,a)

p(utDzt; q)~N (vzt ,s
2)

q~fv,g,ag, ph(q)

ð9Þ

Here, z1:t denotes the sequence of hidden states from trial 1 to trial

t. The structure of the transition matrix, its dependence on the

history of hidden states, as well as the model parameters and their

priors are described in detail in Section 1 of Text S1. Note that we

Table 2. Explanation of the variables in our computational models of trial-wise MMN amplitudes.

Variable Explanation

Inputs

n1, � � � ,n7ð Þ~ log(500), � � � ,log(800)ð Þ log-frequencies (Hz) of tones presented in the roving oddball exp.

ut[fn1, � � � ,n7g sensory input on trial t

Output

y
(k)
t

MMN amplitude evoked by the tth deviant at the kth electrode

Modelling Framework

M model of trial-wise MMN amplitudes

xt internal state in trial t

fi(xt,ut,h) evolution function mapping the current state and the sensory input to the
next state

gi(xt,ut; h) response function of model Mi , maps internal state and sensory input to
neural response

h subject-specific parameters of the evolution and response functions

Li(x) predictors of local field potentials implied by internal states x and response
function gi

fam model family: set of models with a common characteristic

Internal States of Change Detection Models

xt represents input of current and previous trial (memory trace)

Internal States of Adaption Model

xr,t(ni) responsiveness of neurons selective to log-frequency vi in trial t

Internal States of Bayesian Observer (FEP Models)

M probabilistic mental model of tone sequences

xz,t belief about category of the previous tone

xv,t(j) belief about characteristic log-frequency of the j-th tone category

Tk,l belief about transition probability from hidden state k to hidden state l

xg,t belief about average sequence length

xa,t(k, l) belief about the probability of a transition from category k to category l
given that a change occurs

Parameters (h) of the Change Detection Models

fg This model family has no free parameters.

Parameters (h) of the Adaptation Model

tadapt time constant of the adaptation process

trecover time constant of the recovery from adaptation

Parameters (h) of the Bayesian Observer (FEP Models)

s2 perceptual uncertainty

n0 strength of prior beliefs (number of virtual tone sequences observed prior to
the experiment)

g0 prior expectation of tone sequence lengths

doi:10.1371/journal.pcbi.1002911.t002
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do not make strong assumptions about the prior knowledge each

subject brings to the experiment or their perceptual uncertainty.

Instead, we infer each subject’s prior beliefs ph(q) and perceptual

uncertainty s2[h individually by estimating the hyperparameters h
from their data; for details see Section 3 in Text S1. Importantly,

the hyperparameters are not properties of the environment

learned by the observer, but properties of the observer that must

be inferred by the experimenter [34].

Evolution function of the Bayesian observer’s

beliefs. This subsection derives the evolution function fFEP of

the Bayesian observer’s beliefs from the free-energy principle

(FEP). The free-energy principle goes back to Helmholtz’s idea

that perception is unconscious inference about the state of the

world [55]. More recently this idea has been formalized in terms of

Bayesian inference. The Bayesian brain hypothesis maintains that

the brain computes a probability distribution over the potential

causes (z,q) of its sensory inputs u by inverting a mental model m

of how its sensory inputs are generated [2,3,56–59]. The hidden

causes comprise the hidden environmental states z and a set of

parameters q that describe their effects (i.e., how they influence

each other and how they cause sensory inputs). The normative

solution to this problem is given by Bayes theorem: p(z,qDu,m).
However, evaluating Bayes theorem is intractable for all but the

simplest problems. Thus the brain has to use a more efficient but

potentially less accurate inference mechanism. According to the

free-energy principle, this mechanism optimizes sufficient statistics

of a parametric approximation q(z,q) to the posterior density by

neural dynamics that minimize the free-energy F [2,37,60]. The

free-energy F can be expressed as the surprise (about the joint

occurrence of the sensory inputs u, hidden states z and parameters

q) that is expected under an approximate posterior density q,

minus the entropy of q [61]:

F~G{H

G~S{ ln p(u,t,qDm)Tq

H~S{ ln q z,qð ÞTq

ð10Þ

Figure 3. Structure of free-energy based models of the MMN. Our free-energy models of trial-wise MMN amplitudes (famFEP in Figure 2) are
cast within the general dynamic state-space framework formulated in Equation (1). In contrast to the phenomenological models, the internal states
(x) represent probabilistic beliefs about the environment and evolve according to approximate Bayesian inference by free-energy minimization
(fFEP). All of these models share the Bayesian observer defined by the evolution function fFEP and the probabilistic mental model m, but differ in
their response functions g. The graph in the innermost box shows the mental model m as a probabilistic graphical model (with arrows indicating
conditional dependencies). The random variables in circles are sensory inputs (Ut), tone categories (Zt), and transition probabilities (T). This mental
model determines how subjects perceive, learn about and predict tone sequences. Please see Table 2 for an explanation of the mathematical
notation.
doi:10.1371/journal.pcbi.1002911.g003
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This free-energy framework, which has been used by several

recent studies examining learning and inference in the brain

[2,61–63], derives from a variational Bayesian [64] perspective on

how optimal Bayesian inference could be approximated efficiently.

In the following, we use this framework for motivating three

families of Bayesian information processing models, in which the

internal states x encode the sufficient statistics of the approximate

posterior q(z,q). For stimuli that are well known and presented at

a very high signal-to-noise ratio, as the sine tones in our case, it is

reasonable to assume that the brain encodes these approximate

posterior beliefs with point estimates. Thus q is a delta-distribution

and its sufficient statistics are its expectations (which are also the

coordinates of its peak), i.e. xt~(xz,t,xq,t) where the first subscript

denotes the variable or parameter, and the second subscript

denotes the trial that the observer entered with this belief. In other

words, xq,t corresponds to prior belief in trial t about the

parameters of the mental model m, and xz,t represents the brain’s

belief (expectation) about the category of the tone presented in trial

t{1. The approximation of posterior beliefs with delta distribu-

tions reduces the free-energy to the expected internal energy G:

F~G~S{ ln p(u,z,qDm)Tq~{ ln p(u,z~xz,q~xqDm) ð11Þ

Minimizing free-energy with respect to the sufficient statistics x of

the approximation q(z,q) accomplishes both perception (inference

on the hidden environmental states z) and learning (inference on

the parameters q). Under the free-energy principle, the temporal

evolution function (Eq. (12)) of the observer’s beliefs follows

directly from the mental model (Eq. (9)) of how sensory inputs are

generated; the result is a deterministic function of the current state

xt and the sensory input ut:

xtz1~fFEP(xt,ut; h)~ argmin
xtz1

F (xtz1,ut,xt,m) ð12Þ

Here, h is a set of three hyperparameters that capture

interindividual differences in the mental model m (see Table 2

and Section 3 in Text S1). The evolution function in Eq. 12 is the

common core of all nine free-energy models of the MMN (models

M5—M13 in Figure 2). It derives from a variational scheme that

relates free-energy minimization to maximum-a-posteriori infer-

ence. It is explained in detail in Section 2 in Text S1, where we

have made an effort to link this scheme to putative neurobiological

mechanisms (Section 6 in Text S1).

To compute the temporal evolution of the internal states

predicted by our free-energy models, the evolution function was

iteratively applied to the known sequence of log-frequencies

presented in the empirical study. This provides a succession of

posterior beliefs that are encoded by neuronal activity and give rise

to trial-wise MMN responses. To specify this mapping between

posterior beliefs and MMN amplitudes, we now turn to the

response models (g5, � � � ,g13).

Response functions: From posterior beliefs to the MMN

amplitudes. After the preceding sections have described the

Bayesian observer, this section describes the response functions

specifying how its internal states manifest in measured MMN

amplitudes. In the present MMN literature, there are three major

hypotheses which can be understood as special cases of the free-

energy framework in Figure 3. These hypotheses differ in which

particular aspect of sensory learning and perception they postulate

to be reflected by the MMN. In our framework, these competing

views can be expressed by three classes of response models g
linking the MMN to different neural sub-computations of the

belief updates prescribed by the free-energy principle. These

response models are briefly summarized here; technical details can

be found in Tables 1 and 2, as well as in Section 4 in Text S1.

1. The prediction error models assume that the MMN

reflects the activity of neurons encoding precision weighted

prediction errors on sensory inputs and hidden states. Roughly

speaking, prediction errors are the difference between what is

observed and what was predicted from previous experience

according to the probabilistic mental model m. These models

appeal to predictive coding [5] formulations of free energy

minimization that rest upon hierarchical message passing

between representational and prediction error units . Notably,

the MMN may be sensitive to prediction errors on sensory

inputs, or to prediction errors on hidden states. Each possibility

is formalized by a response model (famPE~fM5,M6g; see

Table 1).

2. The novelty detection models assume that the MMN

reflects neuronal activity encoding surprisal (also known as

‘‘self-information’’ or ‘‘Shannon surprise’’) with respect to the

conditional probability distributions describing the observer’s

beliefs. Unlike prediction error, surprisal is an unsigned

quantity, corresponding to the negative logarithm of the

conditional probability of sensory inputs given expectations

about hidden states (or of hidden states given expectations

about model parameters). Because the mental model assumes

additive Gaussian noise, the conditional surprise about a

stimulus is determined by the precision weighted squared

prediction error on the stimulus (equivalently for hidden states).

This provides a tractable approximation to the Shannon

surprise with respect to the prior predictive density over

sensory inputs ({ ln p(yDm)) – which, critically, is a formal

measure of novelty. This class of response models is thus

compatible with hypotheses according to which the MMN

indexes an automatic novelty detection process [21,22]. While the

first novelty detection model links the MMN to the novelty of

sensory inputs, the second novelty detection model links the

MMN to the novelty of hidden temporal structure

(famnovelty~fM7,M8g; see Table 1).

3. The ‘‘model adjustment’’ models assume that trial-wise

MMN amplitudes reflect adjustments of the parameters of the

probabilistic mental model m; this is a formalization of the

model adjustment hypothesis [19]. MMN amplitudes could reflect

adjustments of different parameters (i.e., the categories’ mean

frequencies, the expected sequence length, and the conditional

transition probabilities) and in different ways (i.e., sensitive or

insensitive to the sign of the adjustment). This implies a

factorial structure of 3|2~6 response models. Section 4 in

Text S1 provides details and explains why two of these models

are redundant, thus resulting in 5 response models for this

family (famadj~fM9, � � � ,M13g; see Table 1).

This completes the formulation of 13 computational models of

trial-by-trial changes in MMN amplitude distributed over five

model families (see Figure 2). We now proceed to describing

family-level Bayesian model selection [36] for evaluating the

relative plausibility of the five hypotheses (model families).

Importantly, this model comparison at the family levels is less

dependent on details of the individual models and thus integrates

out uncertainty about how each hypothesis should be formalized

exactly.

Bayesian model selection
Above, we have derived 13 different models predicting the trial-

wise MMN amplitudes during our roving oddball experiment.
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These models differ in numerous ways, conceptually and

mathematically. For example, the evolution function of the change

detection models has no free parameters whereas the evolution

function of free-energy models has 3 free parameters (see Table 2).

Critically, because model fit increases monotonically with model

complexity, the relative plausibility of these models cannot simply

be established based on how well they fit the data. Generally, the

true desideratum of model comparison, the generalizability of a

model, cannot be determined from fit measures alone; instead,

model comparison needs to assess the trade-off between model fit

and model complexity [65,66]. From a Bayesian perspective, this

is provided by the (log) model evidence (i.e., the log probability of

the data given a model) which corresponds to the negative surprise

about the data and represents a principled measure of the balance

between model fit and model complexity. Here, we used a

Bayesian model selection (BMS) procedure at the group level that

treats models as random effects in the population and can

successfully deal with population heterogeneity and outliers [35].

As input, this procedure requires the log-evidence of each model

considered, for each subject separately. In the following, we

describe how these log-evidences were obtained, detailing the

likelihood function and priors that underlie the computation of the

log-evidence for individual models and subjects.

As EEG signals result from a linear superposition of local

electrophysiological responses, one can use a general linear model

to map the predictions of local field potentials (L i in Table 2) to

measured trial-wise MMN amplitudes. In each subject and for

each model considered, we modelled the data matrix of trial-wise

MMN amplitudes across all trials 1, � � � ,tð Þ and across all selected

electrodes 1, � � � ,kð Þ as follows:

Let y(k)~ y
(k)
1 . . . y(k)

t

� �T

denote the vector of MMN

amplitudes at a selected electrode k. We regard each y(k) as noisy

observations of an electrode-specific linear mixture of evoked

neuronal responses that reflect the trial-by-trial evolution of

internal states. For each response model Mi described above, we

therefore apply the following multivariate Bayesian linear regres-

sion model with conjugate priors to each subject’s data:

Y~ y(1) � � � y(k)
� �

~Xi b(1) � � � b(k)
� �

z e(1) � � � e(k)
� �

ei*N 0,Se,ið Þ with Se,i~

s2
e,i � � � 0

..

.
P

..

.

0 � � � s2
e,i

0
BBB@

1
CCCA for 1ƒiƒk

ð13Þ

Here, Xi denotes the design matrix that was created by replacing

the non-constant columns of Li (cf. Eq. 3) by their z-transforms,

b(k) are the regression coefficients for the kth electrode, and se,k is

the standard deviation of measurement errors at the kth electrode.

When inverting this model, we used uninformative Gaussian priors

on the regression coefficients and uninformative Gamma priors on

the error precisions; for details see Section 5 in Text S1.

Note that we are not interested in the regression coefficients but

in each model’s log-evidence log p(yDmi). Given the likelihood

function and priors described above, the log-model evidences were

computed by Monte-Carlo integration (see Section 5 in Text S1

for details). Based on the log model-evidences, we estimated the

posterior probability of each model by a Bayesian random effects

analysis at the group level [35] with a uniform prior on models.

For comparing the model families described in Figure 2 Bayesian

inference on partitions of model-space [36] was performed to

compute the posterior probability P(fami DY) of each model family,

where Y denotes the data across all pre-defined electrodes and

subjects. This approach can easily deal with families of different

size (i.e., different numbers of models per family). In brief,

unbiased family-level inference requires uniform (flat) priors over

families, and this was achieved by setting each model’s ‘‘prior

count‘‘ (i.e. the parameters of the Dirichlet prior on model

probabilities) to 1 over the size of the respective model family; see

[36] for details. Inference on model families used Gibbs sampling

with two million samples per family. Finally, we computed the

exceedance probability [35] for each model and model family, i.e.,

the probability that this model (family) was more likely to have

generated the data than any other model (family).

Results

Models and theories of the MMN
In the Models and Methods section, we derived five classes of

models describing how the MMN may reflect the computational

processes that govern learning and perception during the roving

oddball experiment. Three of the five model classes were derived

from the free-energy principle and correspond to formal repre-

sentations of three contemporary theories of the MMN; i.e.,

predictive coding, novelty detection, and model adjustment. These

models explain the MMN as arising from prediction error signals,

surprise or adjustments to model parameters, respectively.

Furthermore, we formalized two traditional theories of the

MMN: the change detection and adaptation theory. The resulting

model space comprised 13 models in five families (see Figure 2). In

all models, we have connected the (hidden) processes of perception

and learning to measured EEG responses via different response

models and a linear electromagnetic forward model. In this

section, we assess the relative plausibility of these models and

model families using posterior model probabilities and exceedance

probabilities computed by Bayesian model selection (BMS) as

detailed above. The resulting posterior distributions will be

presented as figures, and the main text will report inferences

based on those distributions in terms of exceedance probabilities.

Figure 4 shows the results of BMS in terms of the posterior

probabilities of all models considered. First, note that our ‘‘null’’

model (M1, the first change detection model), the only model

predicting the absence of trial-by-trial changes in MMN ampli-

tudes, is not the best model. Contrary to the predictions of this

model, the MMN amplitude appears to vary systematically over

deviant trials. This suggests that the MMN is not simply a

categorical response to regularity violation but context dependent,

as predicted by trial-by-trial statistical learning. Notably, the best

five models were all derived within the free-energy framework.

Model M6, which explains trial-wise changes in MMN amplitude

as a manifestation of precision weighted prediction errors (on the

hidden tone category), was best supported by our data (exceedance

probability w~0:21). It was followed by three ‘‘model adjustment’’

models (M10, M11, M13), each with exceedance probability

ww0:15. These models explain fluctuations in MMN amplitude

as arising from a trial-wise adjustment of the parameters encoding

posterior beliefs about the expected number of tone repetitions

and the conditional transition probabilities. When examining the

fit of the best model, we found that it accounted for 2.3% of the

total variance of single-trial MMN amplitudes (across all subjects).

The amount of variance explained was significant in each and

every subject (p,0.01 in 6 subjects; p,0.02 in two subjects). To

put this into perspective, this model-based explanation accounted

for about 6.5 times as much variance as could be explained by a

more conventional analysis, i.e., a linear regression model

considering recent stimulus history (number of standards preced-

ing the deviant).
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While the exceedance probability of the best model M6 was

about five times as large as the exceedance probability of our

‘‘null’’ model M1, this was too small to yield an acceptably low

probability of model selection error [67]. As the bar plot shows,

the probability mass is concentrated on two model families

(prediction error and model adjustment) but distributed over

several models. Thus, BMS at the level of model families was more

appropriate than comparing individual models. From a statistical

perspective, this trades a reduced resolution of the hypothesis

(model) space for increased statistical power. In other words, we

move from asking which specific model is best to asking which of

the five general MMN theories best explains the data, irrespective

of their precise implementations (cf. Figure 2). This comparison of

the five model families is summarized in Figure 5a. The most

plausible MMN theory was the model adjustment theory

(w~0:70), followed by the prediction error theory (w~0:24).

Finally, we used BMS to examine whether the free-energy

principle based models provide, in general, better explanations of

the variability of single-trial MMN amplitudes than phenomeno-

logical models. This means we are now comparing only two

families (Figure 2): the family of free-energy based models

(predictive coding, novelty detection and model adjustment;

famFEP~fM5, � � � ,M13g) and the family of more traditional

phenomenological models (change detection and adaptation,

fampheno~fM1, � � � ,M4g). Family-level BMS indicated that

models based on the free-energy principle were considerably

more convincing than phenomenological models; w~0:99 (see

Figure 5b).

Level of representation
Finally, we asked which level of the processing hierarchy

contributes most to the fluctuations in trial-wise MMN amplitudes.

In other words, we examined whether response variations arise from

lower auditory areas representing physical sound properties like

frequency, or from higher areas that represent abstract temporal

structure. For this purpose we re-partitioned the 13 models into two

families according to whether they explain MMN generation in

relation to a low-level auditory feature (sound frequency) or a high-

level auditory feature (temporal structure). For the models based on

the free-energy principle models the two levels of representation

map onto the two levels of the mental model: sensory inputs and

hidden sequence of tone categories (Figure 3). We assigned the free-

Figure 4. Posterior probabilities of the 13 MMN models. The 13 MMN models were compared by their posterior probability given the trial-
wise MMN amplitudes of all eight subjects. These posterior probabilities were computed by random effects Bayesian model selection at the group
level. The bars are coloured according to the theory instantiated by each model. The model explaining trial-wise MMN amplitudes by precision
weighted prediction errors on the unobservable tone category (M6) had the highest posterior probability (P(M6DY)~0:13). It is closely followed by
three almost equally probable ‘‘model adjustment’’ models (P(M10DY),P(M11DY),P(M13DY)&0:12), and the model explaining trial-wise MMN
amplitudes by prediction errors on the observed log-frequency (P(M5DY)~0:09).
doi:10.1371/journal.pcbi.1002911.g004
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energy based models that relate the MMN elicited by changes in

sound frequency to the representation of sound frequencies to the

first model family and those that relate it to the represented

sequence of tone categories to the second. Furthermore, both the

adaptation model and the change detection theory are formulated

explicitly with regard to stimulus frequencies and are therefore

assigned to the first model family. Overall, this resulted in the

following two model families: famlow~fM1, � � � ,M5,M7,M9,M12g
and famhigh~fM6,M8,M10,M11,M13g. Comparing these two

model families yielded an exceedance probability of whigh~0:97

for famhigh, suggesting that the auditory MMN is more closely

related to a representation of high-level auditory features, such as

temporal structure, than to a representation of low-level features,

such as sound frequency.

Single-trial MMN amplitudes are history-dependent
The models reported above were designed to predict the

evolution of single-trial MMN amplitudes throughout the exper-

iment. This was done to capture putative history-dependent

effects. The models which did take into account such effects (i.e.,

free energy based models) were found to have higher evidence

than models which did not (e.g., the various change detection

models). One may ask, however, as did one of our reviewers,

whether our single-trial approach was really necessary or whether

Figure 5. Bayesian model comparison of the five MMN theories (a) and the two frameworks (b). The bar plot in the upper panel (a)
summarizes the comparison of the five model families in terms of their posterior probabilities. Each bar indicates the posterior probability of a
particular MMN theory (i.e. P(famCDDY), � � � ,P(famadjustmentDY)). The most plausible explanations of our trial-wise MMN data were provided by the
model adjustment hypothesis (P(famadjustmentDY)&0:44) and the prediction error hypothesis (P(famPEDY)&0:28). The lower panel (b) shows the
results of comparing phenomenological (fampheno) vs. free-energy based models (famFEP); see Figure 2. It shows that our free-energy based models
provide considerably more convincing explanations of our MMN data than traditional change detection or adaptation models (P(famFEPDY)~0:87).
doi:10.1371/journal.pcbi.1002911.g005
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it would have been sufficient to analyse the average MMN

amplitude as a function of the number of preceding standards

and the change in frequency. Here we provide a conventional

analysis of variance to demonstrate that our data did contain

history-dependent effects that would have been removed by

conventional averaging. By history-dependent effects we mean

that the MMN amplitude evoked by a deviant following a given

number of standards and a given frequency change will differ

depending on the tones that preceded the current sequence of

standards. The mere number of such tones is a minimal definition that

ignores the effects of their statistical structure, some of which are

captured by our models. However, it allows for a conservative test of

history-dependence, i.e., whether a 3-way analysis of variance

(ANOVA) of trial-wise MMN amplitudes reveals interactions among

three factors: (i) number of preceding standards, (ii) frequency

difference, and (ii) time, i.e., the number of preceding trial sequences.

We found significant main effects for the number of preceding

standards and for frequency difference (Figure 6). More importantly,

however, we found highly significant interaction effects, indicating that

the effect of the number of preceding standards on MMN amplitude

did not only depend on the frequency difference between standard and

deviant (F 10,24681ð Þ~28:65, pv10{15) but also on the number of

previous tone sequences (F (10,24681)~12:42, pv10{15). This

demonstrates that the trial-wise MMN amplitudes we recorded do

indeed show history-dependent effects that would be removed by

conventional averaging procedures.

Discussion

In this paper we presented a framework for modelling single-trial

responses, applied it to formalize five major theories of the MMN (see

Figure 2), and tested them quantitatively against trial-wise MMN

amplitudes measured with EEG from eight healthy volunteers. Our

main finding was that models linking the MMN to computations

approximating Bayes-optimal sensory learning and perception (see

Figure 3) provide better predictions of single-trial MMN amplitudes

than two classical theories (see Figure 5). Furthermore, this paper

offered a unifying perspective on three current theories of the MMN:

prediction errors, model adjustment, and novelty can all be seen as

manifestations of approximate Bayesian learning of sensory regular-

ities by free-energy minimization.

Single-trial MMN amplitudes are informative about
statistical learning

Our analyses suggested that stimulus history (i.e., previous tone

sequences) affects the MMN in intricate ways. This was not only

demonstrated by a simple ANOVA of single-trial MMN

amplitudes, but, more importantly, by our systematic model

comparisons which favoured free-energy based Bayesian informa-

tion processing models that capture history-dependent effects. In

particular, these models explain the dependence of the MMN on

interactions between previous tone sequences and the current tone

sequence in terms of trial-by-trial learning of statistical structure.

Trial-by-trial statistical learning implies that the probabilistic

expectation evoked by a given tone sequence is different for every

presentation, and that each difference reflects what has been

learned since the previous presentation. While traditional MMN

studies have ignored trial-specific effects by averaging responses

across deviant events, several studies have addressed sequential

changes in the MMN across trials [19,23,25–27,51–54,68–70].

However, only [23] and [68] have completely avoided averaging

procedures altogether. The results of this study and [23] question

the frequent assumption that the MMN amplitude is constant

throughout an experimental condition (i.e., for given tones and

following a given number of standards). Instead, our results suggest

that trial-by-trial changes in MMN amplitude are highly history-

dependent and represent an informative index of statistical

learning as the recording session proceeds. It is pleasing that

[23] reached a similar conclusion, even though they studied

mismatch potentials in a different modality (i.e., somatosensory)

and with simpler models, but with source-reconstruction and a

high temporal resolution. Thus, while averaging is a useful tool to

increase the signal-to-noise ratio, single-trial data carry unique

information about the processes of learning and perception that

underlie the MMN.

Figure 6. Trends in MMN amplitudes. Figure 6a shows the average MMN amplitude as a function of the number of standards preceding the
deviant. Figure 6b shows the average MMN amplitude as a function of the frequency of the deviant minus the frequency of the preceding standard
(frequency change).
doi:10.1371/journal.pcbi.1002911.g006
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MMN amplitude as a function of the number of
preceding standards

A number of previous studies reported that the MMN

amplitude elicited by a change in sound frequency increases

monotonically with the number of preceding standards [27,51–

54,69,70]. By contrast, we found a non-monotonic effect of the

number of preceding standards on deviant response amplitude (see

Figure 6a). The reason for this discrepancy may be that previous

studies did not disentangle the contributions of the standard ERP

and the deviant ERP (cf. [71]). In contrast, in this study, we

operationalized the MMN with respect to a fixed standard ERP

(see Models and Methods), so that changes in MMN amplitude

reflected changes in the neural response to the deviant only. In

summary, our results do not contradict previous findings on the

relationship between the number of preceding standards and the

MMN amplitude [27,51–54,69,70] but complement them. Fur-

thermore, our models based on the free-energy principle can

explain why Haenschel et al. [27] observed a monotonic decay of

the standard response with the number of standard repetitions,

and they predict how stimulus history determines the effect of

preceding standards on deviant response amplitude.

Implications for theories of the MMN
Our modelling results do not lend support to the adaptation

hypothesis of the MMN [18] or the change detection interpretation

of the memory trace hypothesis [72]. Instead, our results support

explanations postulating that the brain maintains and constantly

updates an internal model of its environment. For example, the

model adjustment hypothesis [19] posits that auditory cortex maintains

a model of the acoustic environment, and that stimulus-induced

updates of this model are indexed by the MMN [20]. While the

original proposal was of a conceptual nature, our present work

formalizes this hypothesis by specifying how trial-wise changes in

MMN reflect an approximation to Bayesian updating of a

probabilistic mental model. The resulting models are consistent

with the conclusion drawn by [23] that (somatosensory) mismatch

potentials reflect perceptual learning. However, our analysis was

more fine-grained in that it distinguished between three computa-

tional mechanisms that might underlie the perceptual learning that

[23] indexed in terms of Bayesian surprise. Concretely, we

distinguished between prediction error signalling, novelty detection,

and model adjustment. Our results supported model adjustment

and, to a lesser extent, prediction error signalling, but not novelty

detection, even though it computes an approximation to (Shannon)

surprise. We also distinguished between perceptual learning at the

level of physical stimulus properties (sound frequency) and learning

of abstract temporal structure and found strong evidence for the

latter. In neurobiological terms, model adjustment might corre-

spond to synaptic plasticity at top-down projections targeting

pyramidal neurons in layers 2 and 3 (‘‘prediction error units’’) via

NMDA receptors [3] (see Section 6 in Text S1). This would be

consistent with the observation that pharmacological blockage of

NMDA receptors diminishes the MMN [73–75].

Predictive coding formulations of free-energy minimization

assign prediction errors a critical role in the update of posterior

beliefs. When comparing all models individually, the best model

was indeed one that explained trial-wise fluctuations in MMN

amplitude as a function of precision weighted prediction errors

(model M6; Figure 4). However, its superiority over other models

was marginal, and model comparison at the family-level (Figure 5a)

did not support the hypothesis (proposed in [3]) that the MMN

solely reflects precision weighted prediction errors. This suggests

that while prediction error signalling may be essential for the free-

energy minimization process underlying the MMN, it is probably

not the sole determinant of trial-wise MMN amplitudes. Alterna-

tively, our failure to find stronger evidence for the hypothesis that

(precision weighted) prediction errors alone determine trial-wise

MMN amplitudes may be due to some of our simplifying

assumptions, as discussed in the next section.

Limitations
Overall, one should bear in mind that our inferences are

primarily about rather abstract models or classes of models. Our

free-energy based models, in particular, consider the outcomes of

neuronal computations rather than their process. This is a

necessary constraint on models of discrete trial-by-trial variations

in responses; as opposed to continuous time models that would

consider the precise time-course of neural responses over

peristimulus time. This means that we have to assume that there

is some aspect of neuronal activity or excitability that encodes the

posterior beliefs associated with each oddball trial. However, the

relationship between biophysical quantities like synaptic activity or

gain, on the one hand, and posterior beliefs, predictions, and

surprisal, on the other hand, are not specified explicitly in this sort

of model. This means that it is difficult to make any strong

statements about the neurobiology that implements any Bayesian

inference.

Furthermore, our models make several simplifying assumptions

that may turn out to be false. First, there is still no conclusive

evidence about how prediction errors are represented at the level

of single neurons. Second, the assumption of a linear relationship

between the encoded quantity and the MMN amplitude is

simplistic and ignores potential nonlinearities. Third, all of our

models represent the MMN by a single number (i.e., its peak

amplitude), rather than by its waveform, thereby ignoring its

temporal dynamics and spatial topography. Fourth, each of our

models relates trial-wise MMN amplitudes to a single computa-

tional variable, whereas it is known that the MMN scalp potential

is a mixture of signals from several brain areas with (presumably)

different functional characteristics [29–31,76]. Finally, while our

results indicated that our neuronal adaptation model M4 is

insufficient to explain single-trial variations in MMN, we have not

tested the fresh-afferent theory [13] that is based on stimulus

specific adaptation. In future work, it would be useful to formulate

this theory as models of stimulus specific adaptation [12,13,42]

under the present framework and compare it to the computational

models presented in this paper.

Relation to the Bayesian-brain hypothesis
Our models based on the free-energy principle link the MMN to

the neuronal encoding of posterior beliefs that is postulated by the

Bayesian brain hypothesis. According to this hypothesis, the brain

represents probabilistic beliefs, and updates them in an (approx-

imately) Bayesian fashion. Previous work along these lines has

assumed that the support of probability distributions is partitioned

into small bins and that each bin’s probability mass is represented

by the firing rate of dedicated neurons [77,78], or that probability

densities are approximated by a linear combination of basis

functions [79]. In contrast to these high-dimensional representa-

tions, we have implicitly assumed a much simpler, low dimensional

fixed-form approximation to the posterior density. Our predictors

of electrophysiological responses are simple functions of posterior

expectations on log-frequency, tone category and transition

probabilities. These posterior expectations might be encoded by

the average activities of neuronal populations, and the precision

parameters that determine the relative weight assigned to prior

beliefs and sensory evidence could be encoded by the strength of

the recurrent connections of prediction error units [80] (see also
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Section 6 in Text S1). This representation is not motivated by

sparseness, but by computational efficiency: It replaces the

problem of computing the (potentially very high-dimensional)

posterior probability density by optimizing the free-energy with

respect to a small set of sufficient statistics. This variational

Bayesian optimization rests on free-energy minimization [37] and

proposes the minimization of prediction error as an explanation

for stimulus-evoked transient neuronal responses such as the

MMN [3,63,81]. The work presented in this paper is a step

towards linking models of probabilistic neural coding and

inference to neuronal signals that can be measured non-invasively

in humans.

Potential future directions
Our present results were based on a single ‘‘roving oddball’’

EEG experiment that was originally designed for comparing

dynamic causal models of interactions among cortical areas during

the MMN [25]. In the future, it would be interesting to apply the

approach presented here to other types of MMN paradigms.

Additionally, one could use our models in conjunction with recent

advances in design optimization that maximize the sensitivity of

Bayesian model selection [67] to create an experiment that is

optimal for discerning between the models selected by our

analysis. In addition, our modelling and model comparison

framework could be applied to source-reconstructed mismatch

potentials to characterize functional differences between the brain

areas jointly generating MMN scalp potentials.

Furthermore, the link between single-trial mismatch potentials,

on the one hand, and statistical learning and perceptual inference,

on the other hand, could be exploited to measure the temporal

dynamics of how the brain learns the probabilistic structure of

complex environments. This is an attractive prospect, given that

the MMN is elicited not only in simple oddball experiments, but

also in more complex experiments involving speech, language,

music, and abstract features, as well as various other sensory

modalities [14,71,82,83]. Our modelling framework could also be

used to probe disturbances of perceptual inference and learning in

psychiatric conditions, such as schizophrenia [84–86]. In addition,

future studies might use the meta-Bayesian approach [34] for

inferring, from single-trial MMN amplitudes, subjects’ prior beliefs

about hidden temporal structure, which constitute the inductive

biases [87] that endow the brain with its remarkable ability to

discover complex sequential regularities.

Supporting Information

Text S1 Mathematical details of our models and
methods. Sections 1—4 provide additional information about

the models based on the free-energy principle. Concretely, these

sections specify how we modelled the brain’s internal model of

tone sequences, learning and perception, individual differences,

and the manifestation of neurocomputational variables in scalp

potentials. Section 5 explains how we approximated each model’s

log-evidence. Section 6 sketches how the computations postulated

by the free-energy models could be implemented in the brain.

(PDF)
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