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Introduction: Interoception, the perception of the internal state of the body, has

been shown to be closely linked to emotions and mental health. Of particular

interest are interoceptive learning processes that capture associations between

environmental cues and body signals as a basis for making homeostatically

relevant predictions about the future. One method of measuring respiratory

interoceptive learning that has shown promising results is the Breathing Learning

Task (BLT). While the original BLT required binary predictions regarding the

presence or absence of an upcoming inspiratory resistance, here we extended

this paradigm to capture continuous measures of prediction (un)certainty.

Methods: Sixteen healthy participants completed the continuous version

of the BLT, where they were asked to predict the likelihood of breathing

resistances on a continuous scale from 0.0 to 10.0. In order to explain

participants’ responses, a Rescorla-Wagner model of associative learning was

combinedwith suitable observationmodels for continuous or binary predictions,

respectively. For validation, we compared both models against corresponding

null models and examined the correlation between observed and modeled

predictions. The model was additionally extended to test whether learning rates

di�ered according to stimuli valence. Finally, summary measures of prediction

certainty as well as model estimates for learning rates were considered against

interoceptive and mental health questionnaire measures.

Results: Our results demonstrated that the continuous model fits closely

captured participant behavior using empirical data, and the binarised predictions

showed excellent replicability compared to previously collected data. However,

themodel extension indicated that therewere no significant di�erences between

learning rates for negative (i.e. breathing resistance) and positive (i.e. no breathing

resistance) stimuli. Finally, significant correlations were found between fatigue

severity and both prediction certainty and learning rate, as well as between

anxiety sensitivity and prediction certainty.

Discussion: These results demonstrate the utility of gathering enriched

continuous prediction data in interoceptive learning tasks, and suggest that the

updated BLT is a promising paradigm for future investigations into interoceptive

learning and potential links to mental health.
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1 Introduction

Perception goes beyond the path of registration of sensations

but involves the active interpretation of sensory inputs. This

interpretation is shaped by numerous cognitive factors, such as

prior knowledge or expectations, as well as attention. While

exteroception refers to the perception of the external environment

through the traditional senses of touch, sight, hearing, taste

and smell, interoception refers to the perception of the internal

state of the body (Khalsa et al., 2018). Interoception includes

both conscious and subconscious processes; investigating these

processes is critical for understanding brain-body interactions.

While one of the main roles of interoception is to drive actions

to maintain homeostasis (Pezzulo et al., 2015; Stephan et al.,

2016; Petzschner et al., 2017; Quadt et al., 2018), interoception

is also thought to play an important role in emotional regulation

(Barrett et al., 2004; Critchley et al., 2004; Füstös et al., 2013).

Importantly, interoceptive dysfunction has been implicated in a

range of psychological disorders such as depression, anxiety and

eating disorders (Paulus and Stein, 2010; Khalsa et al., 2018), and

is a rapidly expanding field of research (Brewer et al., 2021).

Computational theories of perception suggest that the brain

acts as an “inference machine” that uses its probabilistic

representations (beliefs) about the state of the world to make

predictions about future incoming sensory stimuli (Rao and

Ballard, 1999; Friston, 2005). The discrepancy between the actual

and predicted stimuli (the prediction error) is then used to

continuously update these beliefs according to Bayesian principles

(Friston, 2005). Numerous experimental studies have provided

empirical evidence that exteroceptive processes such as sight and

hearing operate in this manner (Chennu et al., 2013; Lieder et al.,

2013; Kok and de Lange, 2014; Stefanics et al., 2018), and these

theories are now being extended to interoception in order to

explain how the brain creates a predictive model of the internal

state (Seth et al., 2012; Gu et al., 2013; Barrett and Simmons, 2015;

Pezzulo et al., 2015; Critchley and Garfinkel, 2017). Interoceptive

learning thus refers to the updating of beliefs about the internal

(bodily) state based on predictions made (and errors received)

regarding interoceptive stimuli.

Altered interoceptive learning has been proposed to underpin
aspects of psychopathology. Paulus et al. (2019) hypothesized
that depression and anxiety are potentially linked to two main

dysfunctions in the interoceptive processing pathway: overly strong
expectations, which shape the processing of interoceptive stimuli;
and difficulty in updating predictions to reflect changes in the

external or internal state, which may involve faulty prediction

error signaling. There is already evidence that this is the case

for exteroceptive processing, with a previous study finding that

individuals with anxiety have altered neural activity (as measured

by electroencephalography/EEG) when processing predictions and

prediction errors in a visual reward-learning task (Hein and Ruiz,

2022). Regarding interoceptive learning, previous work byHarrison

et al. (2021) developed an interoceptive learning task that was

performed during functional magnetic resonance imaging (fMRI),

using inspiratory resistances (which make it harder to breathe in)

as an interoceptive stimulus (Rieger et al., 2020; Frässle et al.,

2021). The results indicated a link between heightened anxiety and

alterations in the processing of interoceptive breathing predictions,

finding that more anxious individuals showed altered activity in

the anterior insula related to prediction certainty compared to

less anxious individuals (Harrison et al., 2021). In this study,

binary measures of interoceptive predictions were analyzed by

an established associative learning model (a Rescorla-Wagner

model; Rescorla et al., 1972), to determine a learning rate for

each participant as well as the corresponding trajectories for

predictions and prediction errors. While the breathing learning

task (BLT) used in this previous study shows great potential for

investigating changes in interoceptive learning in different mental

health conditions, one limitation is its reliance on model estimates

to quantify prediction certainty from binary responses, rather than

including a direct measure thereof.

The current study builds on this interoceptive breathing

learning task (BLT) (Harrison et al., 2021) by incorporating direct

measures of prediction certainty in place of binary predictions.

Past research has suggested that mental health disorders such as

anxiety may be associated with an altered response to uncertainty

(Grupe and Nitschke, 2013). Therefore, to more accurately capture

measures of (un)certainty, the BLT from Harrison et al. (2021)

was modified to elicit continuous rather than binary prediction

data, thus incorporating a direct measure of certainty surrounding

predictions. Additionally, there is evidence that individuals learn

more quickly (i.e. adapt their predictions more rapidly) in response

to negative outcomes (Khdour et al., 2016; Aylward et al., 2019).

Therefore, a model extension that incorporated stimuli valence

(i.e. the presence of a breathing resistance [negative stimulus] or

the absence of a breathing resistance [positive stimulus]) was also

employed to examine whether a single or two separate learning

rates would better explain the behavioral data. The modified

BLT and learning model were then tested on a sample of 16

healthy participants, and the results were compared to the data

collected by Harrison et al. (2021). Additionally, the estimated

interoceptive learning parameters were compared to measures

of anxiety, depression, affect and subjective interoception in

an exploratory analysis. Through the incorporation of a direct

measure of prediction certainty in the task and model design, the

current study provides richer information regarding interoceptive

learning and its relationship to mental health.

2 Materials and methods

2.1 BLT equipment setup

In order to deliver the breathing resistances to participants

during the BLT, an inspiratory resistance circuit was utilized (Rieger

et al., 2020). Participants were fitted with a silicone facemask

that was adjusted to make a tight seal around mouth and nose.

This was then connected to a single-use bacterial and viral filter

within the circuit, and inspiratory resistances were induced via

an automatically controlled solenoid valve. This valve allowed air

to be drawn into the circuit either directly from the environment

(with no resistance) or through a PowerBreathe device, which

was set to deliver the predetermined amount of resistance (30%

of a participant’s maximal inspiratory pressure). The circuit also

included a pressure sampling line and spirometer, allowing for

continuous measurements of inspiratory pressure and flow to be
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FIGURE 1

Schematic of the inspiratory resistance circuit used. Participants were connected to the circuit via a facemask covering their mouth and nose which

was attached to a bacterial and viral filter (labeled C). A sampling line to a pressure transducer (labeled O) and amplifier was used to record inspiratory

pressure, and a spirometer (labeled E) was used to measure inspiratory flow. Inspiratory resistances were induced automatically via the stimulus

computer, controller box and solenoid valve (labeled L) to redirect unobstructed air from the environment to the PowerBreathe device (labeled K),

which provided a set magnitude of resistance. Figure adapted from Rieger et al. (2020) under a CC-BY license.

taken throughout the task. For a diagram of the full circuit used see

Figure 1.

2.2 Participants and recruitment

In order to test the continuous response version of the BLT,

data was gathered from 16 healthy volunteers. Participants were

aged 19–42 years (mean age: 23y; 4M, 12F), and were pre-screened

according to the following criteria:

• Aged 18–45

• Regularly exercising no more than once per week

• Non-smoker or light smoker (smoking or vaping once per

week or less)

• Not on any regular medication at time of study (except the oral

contraceptive pill)

• Full color-vision

• Not suffering from any chronic medical conditions, including

current or past history of brain injury or breathing disorder

• No past or current diagnoses of schizophrenia, bipolar

disorder, drug addiction, or psychosis

• Not pregnant or breastfeeding

Participants were recruited from the community using study

advertisements. All participants signed a written, informed

consent, and the study was approved by the New Zealand

Health and Disability Ethics Committee (HDEC) (Ethics approval

20/CEN/168).

Data from a separate group of eight participants (4M, 4F)

were used to determine model priors. These participants had

completed an earlier version of the BLT using binarised responses

and their data had initially been used by Harrison et al. (2021).

All participants signed a written, informed consent, and the study

was approved by the Cantonal Ethics Committee Zurich (Ethics

approval BASEC-No. 2017-02330).

2.3 Procedure

Participants who were selected for the study following online

pre-screening were asked to complete a series of questionnaires

(details in Section 2.3.1) followed by BLT (see Section 2.3.2). Both

tasks required 30–45 min to complete.
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2.3.1 Questionnaires
Following online pre-screening and informed consent,

participants were firstly asked to fill in a number of questionnaires

on the lab computer. The questionnaires presented to the

participants were designed to capture subjective affective measures

as well as general and breathing-specific interoceptive beliefs.

Affective qualities that were measured included state anxiety

(measured by the Spielberger Trait Anxiety Inventory; STAI-S;

Spielberger et al., 1970), symptoms of generalized anxiety disorder

(Generalized Anxiety Disorder Questionnaire; GAD-7; Spitzer

et al., 2006), anxiety sensitivity (Anxiety Sensitivity Index; ASI-

3; Taylor et al., 2007), symptoms of depression (Center for

Epidemiologic Studies Depression Scale; CES-D; Radloff, 1977), as

well as general positive and negative affect (Positive Affect Negative

Affect Schedule; PANAS; Watson et al., 1988).

Self-reported interoceptive awareness was measured by

the Multidimensional Assessment of Interoceptive Awareness

Questionnaire (MAIA; Mehling et al., 2012). Two further

questionnaires measured the tendency to catastrophise in response

to breathlessness (Pain Catastrophising Scale, adapted to replace

pain with breathlessness; PCS-B; Sullivan et al., 1995), as well

as awareness and vigilance surrounding breathlessness (Pain

Vigilance and Awareness Questionnaire, again replacing pain with

breathlessness; PVAQ-B; McCracken, 1997), in line with previous

research (Herigstad et al., 2017; Harrison et al., 2021).

Additional facets related to mental health were measured by

the following questionnaires: General Self Efficacy scale (GSE;

Schwarzer et al., 1997) which measured self-efficacy, Connor

Davidson Resilience Scale (CD-RISC; Connor and Davidson, 2003)

for resilience, and the Fatigue Severity Scale (FSS; Krupp et al.,

1989) for fatigue. Finally, trait anxiety was measured by the

Spielberger Trait Anxiety Inventory (STAI-T; Spielberger et al.,

1970), which participants filled out during the online pre-screening

process.

2.3.2 BLT procedure
After filling out the questionnaires, participants completed the

BLT. In order to set an appropriate level of breathing resistance

for this task, the maximum inspiratory pressure (MIP) was first

measured and recorded for each participant using a PowerBreathe

device (PowerBreathe International Ltd, Warwickshire, UK). The

resistance magnitude for the BLT was then set to 30% of

the participant’s MIP. Once the breathing resistance had been

calibrated to the participant, they were fitted with a breathing

mask (Hans Rudolph, Kansas City, MO, United States) which was

connected to the breathing circuit (see Section 2.1 for details),

and tested to ensure that they could feel the resistances. In two

cases, the participants were unable to perceive the resistances when

operating at their normal tidal volume, and here the resistance

was increased to 50% of their MIP to accommodate for this.

Written instructions for the BLT were given to the participant

to read (see Supplementary Figure S1) and these were repeated

verbally, as well as allowing the participant to ask questions to

ensure they understood the task. Participants were also given a

practice version of the task with six trials before beginning the

actual task.

Participants were informed that the goal of the BLT was

to measure how participants would learn to predict upcoming

breathing resistances, based on their previous associations with

visual cues. During the task, participants were asked how certain

they were that there would be an inspiratory resistance, given the

presentation of one of two visual cues (see Figure 2). The visual cue

was presented together with the prompt to make a prediction about

the upcoming stimulus phase. Participants were told beforehand

that one of the cues had an 80% chance of being followed by a

resistance, while the other cue had a 20% chance of being followed

by a resistance. They were also told that the pairings of the images

with the probabilities could swap during the task, so that the

cue previously associated with an 80% chance of resistance now

predicted a 20% chance of resistance and vice versa. Participants

were not informed of which cue started with which probability, or

when the switches would occur.

For each trial, in the cue/predict phase, one of the visual cues

was displayed on a computer screen for five seconds, along with

a prompt asking the participant to predict the likelihood of a

resistance occurring in the upcoming stimulus phase. Participants

entered their prediction (along with their certainty in the

prediction) by using arrow keys on a keyboard to move a slider on a

scale from “definitely yes” to “definitely no”. Immediately following

this, a circle was shown on the screen for five seconds, during

which time the breathing resistance occurred on resistance trials,

and no resistance (i.e. normal breathing) occurred on all other trials

(stimulus phase). Participants were able to easily assess whether

their prediction was correct due to the unambiguous nature of

the resistance stimulus. Following this period, participants were

asked whether or not a resistance had occurred (report phase). This

report served only to validate that participants were able to identify

when breathing resistance occurred. Participants were then given

a rest period of between seven and nine seconds before the next

trial began. The structure of this task was developed specifically for

feasibility when using breathing stimuli, and was tested with both

synthetic and pilot data (Harrison et al., 2021). The task protocol

used in the current study was adapted from that used by Harrison

et al. (2021) to collect continuous rather than binary prediction

data. The main modification that was made to the BLT for the

current study was the change from a binary prediction (yes/no

options) to a continuous prediction (slider from definitely yes to

definitely no). Additional modifications included the changing of

the report phase from a slider rating of difficulty to a binary yes/no

question regarding the presence of a resistance, to simplify this

question for participants. Timings of the cue/predict and report

phases were modified to accommodate these changes. Finally, the

pause before stimulus presentation was removed, as this served to

meet requirements of fMRI data analysis, which did not apply in

the present study. Figure 2 provides an overview of the structure of

each trial and the alterations that were made to gather continuous

response data. The code for the updated BLT which includes an

option for collecting continuous response data is available in the

open-source TAPAS collection (Frässle et al., 2021) (https://www.

translationalneuromodeling.org/tapas/).

In total, the task consisted of 80 trials, which took

approximately 30 minutes to complete. During the task,

physiological recordings of inspiratory pressure, breathing rate,
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FIGURE 2

(A) An overview of the structure of a single trial in the version of the BLT used in Harrison et al. (2021). (B) An overview of the structure of a single trial

in the version of the BLT used for the current study. The main changes are that the cue/prediction phase was changed to allow continuous

predictions via a slider (with a longer timeframe for this phase to compensate), while the report phase was changed to a binary yes/no response to

simplify this decision for participants. Additionally, the pause before the stimulus was removed after lengthening the cue/prediction phase. Figure

adapted from Harrison et al. (2021) under a CC-BY license.

breathing volume and heart rate were taken using a spirometer

and pulse monitor, connected to a PowerLab and recorded using

LabChart 8 software (ADInstruments, Dunedin, New Zealand).

Participants also wore headphones playing pink noise throughout

the task.

The initial pairing of cue-to-resistance was counter-balanced

across participants (such that each cue was first paired with an

80% chance of resistance for half of the participants), as well as

the position of the “definitely yes” and “definitely no” anchors on

the left or right of the screen. The initial pairing was always held

constant for the first 30 trials before the pairings were switched

(i.e. the cue initially paired with 20% chance of resistance was now

paired with 80% chance of resistance and vice versa). The pairings

were then switched three more times during the remaining 50 trials

at shorter intervals (12-13 trials), for a total of four switches of

cue-resistance pairings throughout the task. The number of trials

between each switch was held constant for all participants. This

is the same protocol as was used and validated in the study by

Harrison et al. (2021).

2.4 Data processing

Questionnaires were scored according to their respective

manuals, with a summary of the relevant scores presented in

Section 3.3. For the BLT, data was first checked for missed trials.

Data from one participant was excluded from further analysis due

to missing more than 10 trials (as predetermined in the analysis

plan which can be viewed at https://github.com/IMAGEotago/

Katja-BLT-analysisPlan). Next, each participant’s average certainty

was determined by taking the absolute value of the difference
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between their response and 0.5 [with responses being values

between 0.0 (definitely no resistance) and 1.0 (definitely resistance)

and 0.5 thus representing complete indecision] for each trial and

averaging across all trials. For the binary model, predictions were

then binarised, with each value above 0.5 becoming 1.0, and each

value below 0.5 becoming 0.0 (values at exactly 0.5 were treated as

missed trials for the binary model). Finally, the outcomes of each

trial were adjusted to be in “contingency space”: i.e., any trial where

cue 1 was paired with a resistance and cue 2 with no resistance

was coded as 1, and any trial where the cue-outcome pairing was

reversed was coded as 0, as previously described (Iglesias et al.,

2013; Harrison et al., 2021). Notably, contingency space coding

does not depend on which binary value is assigned to coupled cue-

outcome pairs and is equivalent to the case of running two models

in parallel, one for each outcome [for details, see Supplementary

material to Iglesias et al. (2013)]. This type of coding was possible

because of the fixed coupling of contingencies in our task (see

Section 2.3.2 for more detail), which the participants were made

explicitly aware of. However, this method does assume that learning

is the same for resistance and no resistance trials. To address

this assumption, we extended our model to separate the learning

parameters for resistance and no resistance trials (see Section 2.6.2).

2.5 Task validation

In order to validate that participants were completing the task

as expected, the proportion of correct (binarised) responses on each

trial across all participants was compared with data from Harrison

et al. (2021), which investigated a larger cohort of participants using

the binary prediction version of the BLT. This allowed us to verify

that overall, participants understood the task and behaved in line

with previous findings from a larger cohort.

2.6 Associative learning model

The previous study by Harrison et al. (2021) utilized a classical

associative learning Rescorla-Wagner model (Rescorla et al., 1972)

to analyse responses from the BLT. Model comparison was initially

performed with two alternative hierarchical Gaussian filter (HGF;

Mathys et al., 2011) models that included both a dynamic learning

rate (i.e., a two-level HGF), and a measure of volatility (i.e. a three-

level HGF). However, as there was no clear winning model when fit

to the data, the simplest model was chosen as per the pre-specified

analysis plan of Harrison et al. (2021). Therefore, here we chose

the same Rescorla-Wagner model for comparable results. In this

model, the predicted outcome for a given trial vt+1 is based on the

predicted outcome for the previous trial vt as well as the prediction

error for the previous trial δt scaled by the learning rate of the

participant α:

vt+1 = vt + αδt (1)

where the prediction error is the difference between the actual

outcome ot and the predicted outcome vt for the previous trial:

δt = ot − vt (2)

Previous research has employed similar models on binary

BLT data (see Harrison et al., 2021), where participants had two

choices (Resistance/No Resistance) when asked to predict the

outcome of each trial. However, in the current version of the BLT,

participants were asked to predict the outcome of each trial on

a sliding scale with values from 0.0 (Definitely No Resistance)

to 1.0 (Definitely Resistance). These continuous data therefore

include a direct measure of the participant’s certainty in their

predictions, rather than requiring this to be inferred from fitted

model trajectories. In order to apply the model to the participants’

observed responses, the Rescorla-Wagner learning model (Eq. 1)

was paired with two different observation models - one using

binarised responses (for comparisons with previous versions of the

task) and the other continuous responses (henceforth referred to

as the binary model and the continuous model respectively). In

either case, the participant’s responses (i.e., binary or continuous

predictions about trial outcome) and outcomes (binary: absence

or presence of resistance) from each trial were modeled by

estimating a subject-specific learning rate (α) for the participant

(see Eq. 1). The specifics of each observation model are discussed

in Section 2.6.1.

2.6.1 Observation models
The observation model translates the predicted outcome, as

provided by the learning model, into predicted behavior (i.e.,

moving the slider to a certain position for the next trial in the

case of continuous data, or a binary decision for the binarised

data).

2.6.1.1 Binary model

The binary model uses a softmax function as the observation

model, which translates the estimates obtained by the learning

model into the probability of choosing a given action - in this

case, deciding whether a given stimulus predicts resistance or no

resistance. The softmax function used by the binary model can be

represented as follows (Equation 3):

p(yt|vt ,β) =
eβvt

eβvt + eβ(1−vt)
(3)

Where p(yt|vt ,β) represents the estimated probability of

choosing a given binary prediction response yt given the predicted

outcome vt , β is a static parameter that determines the steepness

of the gradient of the softmax function, and vt is the value

calculated by the learning model. The parameter β can be altered to

represent more or less noise in the decision-making process, with

a higher β resulting in a steeper softmax gradient, and thus more

deterministic behavior.

2.6.1.2 Continuous model

As the continuous model allows for predictions to occur on

a continuous scale rather than having to make a binary decision,

the value obtained from the learning model for a given trial vt is

represented by the observed continuous prediction response yt . The

likelihood of the data is derived using a beta distribution, given that

the responses lie in the range [0,1], and that the beta distribution

is an adequate model for continuous bounded data, such as
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proportions or probabilities. Here, we use a formulation which re-

parameterises the usual shape parameters of the beta distribution

in terms of parameters for mean and dispersion (Paolino, 2001).

Moreover, we make dispersion a group parameter, φ, where higher

φ represents less noise.

Specifically, this is implemented by re-parameterising the shape

parameters of the standard beta distribution (specified by a and b,

both vectors of length ntrials · nsubjects) in terms of mean µ (a vector

of length ntrials · nsubjects, which contains the values obtained from

the learning model (see Equation 1) for each subject and trial) and

a scalar dispersion parameter φ (which is constant across subjects

and trials), as follows (Equations 4, 5) (Paolino, 2001):

a = µ · φ (4)

b = (1− µ) · φ (5)

As a result, large values of φ result in a tighter distribution

while smaller values result in a wider distribution. In other words,

less consistent (i.e., noisier) responses across subjects are reflected

by a smaller value of φ. Here we estimate a single value of φ

across all subjects, though we note that subject-specific values

could in principle be estimated to allow for differences in response

consistency across subjects.

2.6.2 Dual learning rate model
To investigate whether there were learning differences between

positive and negative valence stimuli, a variation of the model

was created that used an altered version of the Rescorla-Wagner

algorithm. This version is equivalent to Equations 1, 2, except that it

contains two learning rates: αp and αn. Which learning rate is used

for the update on a given trial depends on the stimulus type s that

occurred during that trial - no breathing resistance is considered a

positive valence stimulus (represented as st = 0) while breathing

resistance is considered a negative valence stimulus (represented as

st = 1). The state equation for the dual learning rate model is thus

as follows (Equation 6):

vt+1 =

{

vt + αpδt if st = 0

vt + αnδt if st = 1
(6)

where the predicted error δt is calculated as in Equation 2.

2.7 Model testing

2.7.1 Parameter estimation and prior selection
Both models used maximum a posteriori (MAP) methods to

obtain parameter estimates (using single-start optimisation and the

L-BFGS-B algorithm; Byrd et al., 1995; Zhu et al., 1997), with the

following priors: for α (as well as for αp and αn for the dual learning

rate model) the prior mean was 0.34 and variance was 0.88 and for

β the prior mean was 4.21 and variance was 1.75 (all specified in

native space using a Gaussian distribution, with α values bounded

between 0.0 and 1.0). These prior distributions were calculated

using the binary model to obtain Maximum Likelihood Estimates

(MLE) from data of a separate group of eight pilot participants,

originally used for the Harrison et al. (2021) study. The initial

value of v (the predicted outcome) was fixed at 0.5 (representing

complete uncertainty of the outcome) for both models. The code

used for model inversions can be found at https://github.com/

IMAGEotago/Katja-BLT-code.

2.7.2 Simulation and parameter recovery
To test and validate the models, we first simulated responses

to the BLT for hypothetical participants with a range of different

learning rates. This was performed 500 times for each version of

the model (as pre-specified in the analysis plan), using a randomly

generated learning rate each time—drawn from a truncated normal

distribution with a mean of 0.34, a variance of 0.88, with lower

and upper bounds of 0.0 and 1.0 respectively. Each simulation was

performed using the same sequence of outcomes for each trial as in

the BLT. The simulations were repeated for four different β values

(of the softmax response function) for the binary model. For the

continuousmodel, noise drawn from aGaussian distribution with a

mean of 0.0 and a standard deviation σ was added to the simulated

prediction responses in order to reflect the noise inherent in real-

world behavioral data. Once noise was added, the observed values

were constrained such that the simulated prediction responses yt
remain within 0.0 and 1.0 by bounding upper and lower values.

Similarly to the binary model, simulations for the continuous

model were repeated for four different σ values (representing

different levels of noise). An example of the simulated trajectories

can be seen in Figure 3.

The data generated from each simulation was then fitted to

assess how accurately the model parameters could be recovered

(Wilson and Collins, 2019). 10 runs of simulation and parameter

recovery were completed at each noise level (simulating 500

subjects each time), to ensure consistency was high across

simulation runs. The results for parameter recovery are presented

in Section 3.2.1.

2.7.3 Model inversions on empirical data
Following successful parameter recovery using synthetic data

for both models, the empirical data gathered from the BLT for

each participant were used to invert each model. The model input

consisted of the predictions made by participants on each trial

along with the outcomes of each trial (resistance or no resistance,

with both predictions and outcomes in contingency space; see

Section 2.4). From this input, the models estimate a learning rate

(α) for each participant, as well as either a β value (of the softmax

response function) when using the binary model or a group-level

dispersion parameter φ when using the continuous model. The

same process was used to obtain estimates for αp and αn values

(and β for the binary version) for the dual learning rate model.

The results for each model for all participants are presented in

Section 3.2.2.

2.7.4 Model validation
The next step for validating the models was to verify that

they provided useful information from fitting the participants’
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FIGURE 3

Example of simulation results using the continuous model for 500 subjects (σ = 0.01). Each line represents a di�erent simulated subject, with a

lighter blue line indicating a high α and a darker blue line indicating a lower α.

data. In order to do this, both the binary and continuous model

fits to participant data were compared to a null version of the

respective model. This null model works the same as the binary

or continuous model except that the learning rate α was fixed

at 0.0. It therefore represents a condition where no learning

occurs (i.e. vt is clamped to 0.5) and all input is attributed

to noise. The binary and continuous model were validated by

comparing the model fits to the respective null model fits using

the Bayesian Information Criterion (BIC; Schwarz, 1978) and the

Akaike Information Criterion (AIC; Akaike, 1973). Both the BIC

and the AIC are ways of determining whichmodel is “best” in terms

of the trade-off between goodness of fit andmodel simplicity (Kuha,

2004). Although this inverts the original definition of BIC (Schwarz,

1978), one way to include the definitions of both BIC and AIC in

one expression is:

AIC or BIC = −2ln(L̂)+ cκ (7)

Here L̂ is the log likelihood of the data given the parameter

estimates, κ is the total number of parameters in the model (as

a proxy of model complexity), and c is a penalty coefficient. For

the BIC, c = ln(n) where n is the number of observations, while

for the AIC, c = 2 (Vrieze, 2012). Given the above formulation

(Equation 7), the model with the smaller BIC or AIC value is

considered to be the better model in terms of how well it minimizes

information loss. A conversion into Bayes factors can be used

to quantify the degree to which one model is preferred (Penny

et al., 2004; Wagenmakers, 2007). Since BIC and AIC have different

notions of model complexity, we used both of them to compare the

binary and continuous models against the respective null models.

It should be noted that model comparison by BIC and AIC is

only valid when comparing models fit to the same data, therefore

they cannot be used to compare directly between the binary and

continuous models.

In addition to this, a second validation was performed by

analysing how well model fits correlated to actual participant

behavior at the group level. To do this, the average prediction

trajectories fitted by the model were compared to the actual

predictions of the participants (averaged across participants for

each trial) using a Pearson correlation to determine how well they

were aligned. Results from both of these tests are presented in

Section 3.2.3.

2.7.5 Comparisons between single and dual
learning rate models

To determine whether the dual learning rate models were

capturing useful additional information to the single learning rate

models, the BIC and AIC were used to compare the binary and

continuous versions of the two models (using the same approach as

described in Section 2.7.4). Results are presented in Section 3.2.4.

2.7.6 Exploratory correlations with
questionnaires

Finally, we investigated how the information provided by

these models could be used to explore how interoceptive learning

may relate to both measures of mental health and subjective

interoception. To do this, exploratory non-parametric Spearman

rank correlations were performed between the questionnaire

scores (STAI-S, STAI-T, GAD-7, ASI-3, CESD, PANAS-P/N, FSS,

CD_RISC-25, GSE, MAIA, PCS-B, PVAQ-B), the learning rates

estimated by the different models, and the average prediction

certainty of each participant using their continuous prediction data.

Due to the exploratory nature of these correlations, findings are

uncorrected for multiple comparisons. The findings are reported

in Section 3.3 below.

3 Results

3.1 Task validation

To investigate the consistency in task performance in the

current study with the previous binary version of the BLT, the

proportion of correct responses on each trial across all participants

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1254564
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Brand et al. 10.3389/fpsyg.2024.1254564

for the current study was firstly compared to the larger cohort

of previous data (Harrison et al., 2021) (see Figure 4). A strong

correlation was found between the proportion of correct responses

at each trial across the two cohorts, with a Pearson’s correlation

coefficient of r = 0.85 (p = 5.18e−23). This indicates that overall,

participants responded to the new version of the task in a similar

manner to the larger cohort of participants used in the previous

study.

3.2 Model results

3.2.1 Simulation and parameter recovery
3.2.1.1 Binary model

For the binary model, simulation and parameter recovery

was performed at four different values of β (steepness of the

gradient of the softmax function, representing decision noise): 1,

2, 4, and 8, with 10 simulation runs for each value of β and

500 simulation subjects in each run. The Pearson correlation

between the simulated values of α and the recovered values of

α was averaged across the 10 runs for each different value of

β by converting the r-values to z-values, taking the mean, and

then converting back to r-values. Figure 5 shows the results for a

representative run for each different value of β .

As shown in Figure 5, parameter recovery was very successful

for higher values of β , with an average correlation between

estimated and simulated α of r = 0.97 for β = 8, r = 0.95 for β = 4

and r = 0.88 for β = 2. There was still a moderate correlation

between estimated and simulated α of r = 0.68 for β = 1. As can

be seen in Figure 5, there appears to be a ceiling effect for recovered

α values above α ≈ 0.6 when there is less noise present. This finding

has been reported previously with binary data (Harrison et al.,

2021). The simulated β values were also successfully recovered,

with the exception of β = 8 where the recovered β value was lower

than the simulated β value. A visualization of this recovery can be

found in Section 2 of the Supplementary material.

3.2.1.2 Continuous model

Similarly to the binary model, simulation and parameter

recovery was performed at four different values of σ (the standard

deviation of the added noise) - 0.05, 0.1, 0.2, and 0.4, with 10

simulation runs and 500 simulated subjects for each value of σ .

Mean Pearson’s r-scores for each level of noise were calculated as for

the binary model above. Examples of results from a representative

run for each level of noise are shown in Figure 6.

As shown in Figure 6, parameter recovery showed a significant

correlation between simulated and recovered α values at all levels

of noise. The average correlation for each noise level was r = 1.00

at σ = 0.05, r = 0.99 at σ = 0.1, r = 0.97 at σ = 0.2, and

r = 0.90 at σ = 0.4. At higher noise values, an under-estimating

bias became apparent, with recovered values being estimated in

a lower range than simulated values. Increasing the Gaussian

noise (via increased σ ) in simulations produced the expected

reductions in the recovered group-level dispersion parameter φ,

and the values used for simulation can be found in Section 2 of the

Supplementary material.

3.2.1.3 Dual learning rate model

Simulation and parameter recovery was also carried out for

both the binary and continuous versions of the dual learning rate

model, using the same method as explained above. Parameter

recovery showed similar results as the single learning rate model for

the continuous version, with strong correlations between simulated

and recovered α values at all levels of noise: at σ = 0.4 (r(αp) =

0.84, r(αn) = 0.88), σ = 0.2 (r(αp) = 0.94, r(αn) = 0.96),

σ = 0.1 (r(αp) = 0.98, r(αn) = 0.99), and σ = 0.05 (r(αp) =

0.99, r(αn) = 1.00). Similar results were obtained with the binary

version—see Supplementary material Section 4.1 for further detail

and a graphical representation of the parameter recovery results for

the dual learning rate model.

3.2.2 Model inversions on empirical data
3.2.2.1 Binary and continuous models

Both the binary and continuous models were used to estimate

a learning rate (α) for each of the participants (as well as a

β value for the binary model or a σ value for the continuous

model) and produce a corresponding prediction trajectory. The

prediction trajectories for each of the fitted learning rates from both

models are displayed in Figure 7. Supplementary Figure S4 shows a

comparison of individual response data to model-fitted trajectories

for a range of learning rates.

As can be seen in Figure 7, the α values fitted by each of the

models varied across participants. For the continuous model, the

mean α value was 0.08 with a standard deviation of 0.10 and the

value of the group parameter φ was 0.04. For the binary model, the

mean α value was 0.18 with a standard deviation of 0.22, and the

mean β value was 4.68 with a standard deviation of 2.00. Learning

rates fitted by the binary and continuous model were compared

using a t-test, which indicated that the learning rates fitted by the

continuous model were significantly lower than those fitted by the

binary model (p = 0.03).

3.2.2.2 Dual learning rate model

For the dual learning rate model, both the binary and

continuous versions were used to estimate two learning rates

(αp and αn) for each of the participants. The corresponding

prediction trajectories generated for each participant are displayed

in Supplementary Figure S7. For the continuous version, the mean

value of αp was 0.09 (standard deviation of 0.11), the mean value of

αn was 0.07 (standard deviation of 0.11), and the group parameter

φ was 0.05. For the binary version, the mean value of αp was

0.25 (standard deviation of 0.26), the mean value of αn was 0.19

(standard deviation of 0.26), and the mean value of β was 4.31

(standard deviation of 2.49).

3.2.3 Comparison against null models and
validation
3.2.3.1 Binary and continuous models

To test whether the binary and continuous models were

providing useful information when fitting participants’ data,

they were each compared to their respective null models (see

Section 2.7.4 for a full explanation). Both models achieved a smaller

BIC and AIC score (indicating a better fit) than their null model
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FIGURE 4

Proportion of correct responses for each trial across the current study cohort (red line) and the previous study cohort (black line). R indicates the

Pearson correlation coe�cient.

FIGURE 5

Parameter recovery of α for the binary model at four di�erent values of β. Data points shown were taken from one representative simulation run. R

indicates the Pearson correlation coe�cient of the simulated values. (A) β = 8. (B) β = 4. (C) β = 2. (D) β = 1.

counterparts. The binary model produced a BIC of 1,253 and an

AIC of 1,252 compared to the binary null model which produced a

BIC and AIC of 1,691. Calculations of the Bayes factor indicate the

binary model is preferred over the null model with a Bayes factor of

1.36× 1095. The continuous model produced a BIC of -1,315 and

an AIC of -1,316 compared to the continuous null model which

produced a BIC and AIC of -1,070, leading to the continuousmodel

being preferred with a Bayes factor of 1.57× 1053. Both of these

Bayes factors indicate very strong evidence favoring the binary and

continuous models (Raftery, 1995).
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FIGURE 6

Parameter recovery of α for the continuous model at four di�erent values of σ . Data points shown were taken from one representative simulation

run. R indicates the Pearson correlation coe�cient of the simulated values. (A) σ = 0.05. (B) σ = 0.1. (C) σ = 0.2. (D) σ = 0.4.

For the group level validation, an average predicted trajectory

was created by calculating the mean predictions generated by

the model across all participants for each trial. This was then

compared to the mean of the observed prediction values entered

by each participant on each trial, using a Pearson correlation.

This procedure was performed for both the binary and continuous

model, with the binary model being compared to the mean of

the binarised observed prediction values that were used as the

input for that model. The results are presented in Figure 8. The

mean observed predictions and mean modeled predictions showed

a strong correlation for both the binary (r = 0.80, p = 8.18e−19)

and continuous (r = 0.79, p = 1.41e−18) models.

3.2.4 Comparisons between single and dual
learning rate models

To determine whether the dual learning rate binary and

continuous models were explaining the data better than their

single learning rate counterparts, the models were compared using

the BIC and AIC metrics. For the continuous models, the dual

learning rate version produced a BIC of -1,298 and an AIC of -

1,299 when run on the participants’ data compared to a BIC of

-1,315 and an AIC of -1,316 for the single learning rate version,

resulting in a Bayes factor of 6311 in favor of the single learning

rate version. Results were similar for the binary models, with the

dual learning rate version producing a BIC of 1,262 and an AIC

of 1,259, while the single learning rate version had a BIC of 1253

and an AIC of 1,252, resulting in a Bayes factor of 70.1 in favor of

the single learning rate version. These comparisons provide strong

to very strong evidence that the both the binary and continuous

single learning rate models represent a better trade-off between

accuracy and complexity than the corresponding dual learning

rate models.

3.3 Questionnaire results

Participants completed a number of questionnaires measuring

affective and interoceptive qualities (see Section 2.3.1 for full list).

Median scores and interquartile ranges (IQR) across participants

were calculated for each questionnaire and are presented in Table 1.

Exploratory correlations were then performed between the

questionnaire scores and the estimated learning rates obtained

from the continuous [α(c)] and binary [α(b)] models, as well

as the average certainty across trials for each participant from

the continuous prediction data. The results are presented in a

correlation matrix in Figure 9. Results are uncorrected as the

correlations are exploratory in nature.
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FIGURE 7

Fitted prediction trajectories for each participant. (A) Represents results from the binary model, (B) represents results from the continuous model.

Circles represent trial outcomes.

As can be seen in Figure 9, significant correlations were

observed between the questionnaire measures of anxiety,

depression and affect (STAI-T, STAI-S, GAD-7, ASI-3, CESD,

PANAS-P and PANAS-N), and some of these were additionally

related to measures of interoceptive qualities (MAIA, PCS-B,

and PVAQ-B) as expected. Fatigue severity (FSS) was positively

correlated with anxiety sensitivity (ASI-3, rs = 0.67, p = 0.005),

depression symptoms (CESD, rs = 0.50, p = 0.05), and increased

vigilance around breathlessness (PVAQ-B, rs = 0.63, p = 0.01).

Between the BLT data and questionnaire scores, there was a

moderate correlation between FSS scores and both average

certainty values (rs = 0.66, p = 0.01) as well as continuous model

learning rates (rs = 0.60, p = 0.01). There was also a significant

correlation between average certainty values and ASI-3 scores

(rs = 0.51, p = 0.04). Binary model learning rates were negatively

correlated with STAI-T (rs = −0.52, p = 0.04) and positively

correlated with GSE scores (rs = 0.52, p = 0.04).

4 Discussion

This work has provided an advancement on the interoceptive

learning paradigm (BLT) used in Harrison et al. (2021) by

incorporating continuous response data, thus providing a more

direct measure of prediction certainty. Additionally, an extension

of the computational model tested whether stimuli valence had

an effect on learning rate, investigating whether separate learning

rates for positive and negative stimuli should be considered when

fitting behavioral data. Data from a novel continuous version of

the BLT was gathered from a cohort of 16 healthy participants, and

behavioral data from this cohort were compared to that gathered by

Harrison et al. (2021). Importantly, a close correlation was observed

in participant performance (i.e. percentage of correct predictions)

between the two cohorts, indicating that participants were similar

in their overall task performance when moving from binary to

continuous predictions.

By modifying the task to record predictions with a continuous

rather than a binary measure, we can collect additional information

about the interoceptive learning process. While binary response

data reflect only the direction of the prediction (i.e., predicting

a resistance or no resistance) and therefore provide one bit of

information per trial, requiring participants to indicate the degree

of certainty in the prediction provides a continuous readout with

more information. Furthermore, in the classical (binary) version of

the BLT, information about certainty could only be inferred from

the binary data through an appropriate learning model, while the

continuous response data from our modified BLT provide a more

direct readout from participants, allowing prediction certainty
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FIGURE 8

(A) Correlation between mean model predictions across all participants and mean observed prediction values for the binary model. (B) Correlation

between mean model predictions across all participants and mean observed prediction values for the continuous model. R indicates the Pearson

correlation coe�cient.

to be measured independently of any model assumptions. This

allows us to directly investigate the role that (un)certainty plays

in interoceptive learning, and how this may be altered in mental

health disorders such as anxiety. Therefore, to validate our model

alterations for continuous data, we compared the continuousmodel

to the previous binary model using several validation techniques.

When considering model validity using simulated data, both

the binary and continuous models provided significant parameter

recovery across varying levels of noise. It should be noted that

for the continuous model, constrained Gaussian noise was added

to the simulated trajectories. This noise added variability to

simulated responses, but was constrained such that prediction

values remained between 0 and 1. However, these Gaussian noise

assumptions were not implemented during model inversion (see

Section 2.6.1), with variability instead captured by a group-level

dispersion parameter, φ.

For both binary and continuous data, comparisons to

the respective null models using the BIC and AIC indicated

that our trial-wise learning models were greatly superior,

indicating that they were capturing useful information from

participants’ responses. Furthermore, the average modeled

prediction trajectories from both models were highly correlated

with the average observed predictions, suggesting that both models

did well at representing the behavior of participants at a group

level.

No significant correlation was observed when comparing the

estimated learning rate parameters fit by each of the models to

the empirical data. Additionally, the continuous model generally

produced smaller α values in comparison to the binary model.

This may be influenced by both the under-estimation bias and

the reduced variability in the estimated learning rates observed in

the continuous vs. binary model simulation results. In addition,

two of the participants had estimated learning rates below 0.0001

by one or both of the models, which would indicate that little to

no learning occurred during the task. It is therefore possible that

these participants did not properly understand the task or failed to

follow instructions, which future studies using this task may need

to further accommodate for.

In addition to incorporating continuous predictions, we also

explicitly tested the model assumption that a single learning rate

was able to adequately capture participant behavior across the

resistance and no-resistance stimuli. One potential issue with a

single learning rate model is that it assumes that participants learn

at the same rate from negative (i.e., resistance) as for positive (i.e.

no resistance) outcomes, as participants were explicitly told that

cues act as a pair. However, previous research has indicated that
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people may learn differently from negative compared to positive

stimuli, and this may be influenced by factors such as anxiety

(Khdour et al., 2016; Aylward et al., 2019). To test whether learning

differed according to stimuli valence in the BLT, the model was

extended to introduce a dual learning rate algorithm that estimated

separate learning rates following resistance and no-resistance trials.

Overall, both binary and continuous models that incorporated a

dual learning rate produced results consistent with their single

learning rate counterparts. However, the results from comparing

the BIC and AIC for each of the models suggest that the single

learning rate models are preferred over the dual learning rate

models in terms of accuracy-complexity trade-off. Therefore, as the

dual learning rate model did not convey an advantage to explaining

participants’ behavior, a meaningful difference in learning between

positive and negative stimuli for this task is unlikely. Thus, the

TABLE 1 Questionnaire scores.

Median (IQR)

STAI-T 36.5 (18.75)

STAI-S 33 (18.75)

GAD-7 2.5 (4.75)

ASI-3 17.5 (24.75)

CESD 10 (7.75)

PANAS-P 33.5 (8.5)

PANAS-N 18 (10.25)

FSS 35 (17.75)

CD-RISC 25 71 (18.25)

GSE 31 (19)

MAIA 21.29 (6.37)

PCS-B 11.5 (29)

PVAQ-B 32.5 (8.5)

original assumptions made for the single learning rate model are

likely adequate, although a larger sample size would allow for

further validation of this result.

Finally, we investigated whether learning rate parameters fit

by either model and/or the observed prediction certainty from

the continuous task were related to questionnaire measures of

both affective and interoceptive qualities. Fatigue severity (as

measured by the FSS) was found to be positively correlated with

both the learning rate fit by the continuous model and with

average response certainty, but not the learning rate from the

binary model. However, learning rates from the binary model were

correlated with questionnaire measures of trait anxiety and self-

efficacy. Additionally, there was a significant correlation between

average certainty and anxiety sensitivity (as measured by the ASI-

3). These results indicate that the continuous data provide us

with different information compared to when we only consider

binary decisions. However, the binary information is not lost

in this version of the task, allowing the data to be analyzed in

multiple ways. Overall, these preliminary findings demonstrate that

valuable information can be gained from including a direct measure

of response certainty within interoceptive learning tasks when

investigating the relationship between interoception and mental

health.

5 Conclusion

This report has presented a method of incorporating

continuous response data into the interoceptive learning paradigm

(BLT) introduced by Harrison et al. (2021), and presented a suitably

extended response model for a Rescorla-Wagner learning model

of the measured data. Furthermore, it tested whether assuming a

single learning rate, regardless of stimulus valence, was adequate for

the BLT, or whether an extended model with two separate learning

rates would be advantageous. Both binarised and continuous data

from a pilot cohort who completed the modified BLT were fit

using a Rescorla-Wagner learning model. Both models performed

FIGURE 9

Correlation matrix containing the Spearman correlation coe�cients for questionnaire scores, learning rates from the continuous and binary models,

and average certainty. The upper right half of the matrix contains the Spearman correlation coe�cients, while the italicized fields represent the

corresponding p-values for each correlation score. Green highlighted fields indicate significant results at p < 0.1, p < 0.05, p < 0.01, with a darker

green indicating a more significant result. Specific p-values are included in brackets.
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well on simulations (recovery analyses) and fitting the empirical

data. While there was some variability of individual model fits, the

continuous model accurately captured behavior at the group level.

Our preliminary analyses indicate that collecting and analysing

continuous prediction data from the BLT is a valid extension from

previous binary predictions, and may be helpful for investigating

the relationship between mental health and interoceptive learning.

Specifically, the additional information to quantify prediction

certainty demonstrated significant relationships with both fatigue

and anxiety sensitivity scores. Therefore, our extensions provide an

important development for understanding interoceptive learning,

and how this may be altered with mental health conditions.
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