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      Introduction

Motor fatigue is a condition which is frequently experienced 
in everyday life. However, elevated fatigue is a key symp-
tom of many neurological and neuropsychiatric disorders 
(Kluger et al. 2013; Manjaly et al. 2019). Despite its high 
prevalence in clinical and non-clinical settings, the mech-
anisms causing motor fatigue are still poorly understood. 
Here, we focus on one specific aspect of fatigue, called ‘per-
formance fatigability’, which is defined as an objectively 
measurable decline in outcome parameters (Kluger et al. 
2013). Performance fatigability can be studied using a sim-
ple finger-tapping paradigm: tapping as quickly as possible 
for 30 s is characterised by a significant decrease in tapping 
speed, which we refer to as ‘motor slowing’ (Bächinger et 
al. 2019). In this paradigm, the tapping speed reflects the 
objective outcome parameter and the reduction of tapping 
speed over time is a marker of fatigability. Motor slowing is 
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Abstract
Motor fatigability emerges when challenging motor tasks must be maintained over an extended period of time. It is fre-
quently observed in everyday life and affects patients as well as healthy individuals. Motor fatigability can be measured 
using simple tasks like finger tapping at maximum speed for 30 s. This typically results in a rapid decrease of tapping 
frequency, a phenomenon called motor slowing. In a previous study (Bächinger et al, eLife, 8 (September), https://doi.
org/10.7554/eLife.46750, 2019), we showed that motor slowing goes hand in hand with a gradual increase in blood 
oxygen level dependent signal in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and dorsal 
premotor cortex (PMd). It is unclear what drives the activity increase in SM1 caused by motor slowing and whether motor 
fatigability affects the dynamic interactions between SM1, SMA, and PMd. Here, we performed dynamic causal modelling 
(DCM) on data of 24 healthy young participants collected during functional magnetic resonance imaging to answer this 
question. The regions of interest (ROI) were defined based on the peak activation within SM1, SMA, and PMd. The model 
space consisted of bilateral connections between all ROI, with intrinsic self-modulation as inhibitory, and driving inputs 
set to premotor areas. Our findings revealed that motor slowing was associated with a significant reduction in SM1 self-
inhibition, as uncovered by testing the maximum à posteriori against 0 (t(23)=-4.51, p < 0.001). Additionally, the model 
revealed a significant decrease in the driving input to premotor areas (t(23) > 2.71, p < 0.05) suggesting that structures 
other than cortical motor areas may contribute to motor fatigability.
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an interesting paradigm to investigate which brain mecha-
nisms underpin fatigability because neuromuscular and spi-
nal factors have been shown to play only a minor role in 
mediating the decline of tapping speed over time (Arias et 
al. 2015; Madrid et al. 2016, 2018; Madinabeitia-Mancebo 
et al. 2021).

In a recent study, we could show that motor slowing is 
associated with changes in the sensorimotor network and 
in the primary sensorimotor cortex in particular (SM1, 
Bächinger et al. 2019). Despite a decrease in tapping speed, 
blood-oxygen level dependent (BOLD) activation increased 
significantly over time in SM1, dorsal premotor cortex 
(PMd) and the supplementary motor area (SMA). Neuro-
physiological measurements revealed that motor slowing is 
linked to a decrease in inhibition, and specifically surround 
inhibition within SM1, which correlated with an increase in 
coactivation of agonistic-antagonistic muscle groups (Bäch-
inger et al. 2019). These findings suggest that motor slowing 
is associated with the breakdown of inhibitory mechanisms 
in the primary motor cortex. This proposition is consistent 
with a population coding model of the primary motor cortex 
whereby local inhibition can shape the broadness of popula-
tion tuning curves (Georgopoulos et al. 1986; Georgopoulos 
and Carpenter 2015): when surround inhibition is low, ago-
nistic and antagonistic tuning curves are wider, resulting in 
a higher level of coactivation of involved and non-involved 
muscle groups.

It has been suggested that these local inhibitory mech-
anisms can be modulated by excitatory connections from 
other brain areas (Mahan and Georgopoulos 2013). In our 
previous motor slowing study, we proposed that projections 
from areas upstream of SM1 may have altered the observed 
change in inhibition in SM1 (Bächinger et al. 2019). Indeed, 
our functional magnetic resonance imaging (fMRI) results 
showed that motor slowing was also characterized by a sig-
nificant activation increase in PMd and SMA. Both areas 
have been shown to be involved in modulating descend-
ing motor commands (see review Correia et al. 2022). It 
remains unclear, however, how PMd and SMA interact with 
SM1 while motor slowing arises, and how these areas con-
tribute to shaping local inhibition in SM1.

To investigate premotor-motor interactions during motor 
slowing, we performed dynamic causal modelling (DCM) 
on the data from our previous study (Bächinger et al. 2019). 
Previously, we investigated which brain areas show a change 
in BOLD activation, but we did not analyse how these brain 
areas interact. By estimating effective connectivity through 
patterns of causal interaction, DCM can reveal directional-
ity of neural interactions.

We hypothesized that self-inhibition in SM1 would 
decrease during motor slowing. We further explored whether 

motor slowing is associated with changes in effective con-
nectivity between SM1, SMA, and PMd.

Methods

The data used in this manuscript has been published previ-
ously in Bächinger et al. 2019; experiment 6. The focus of the 
analysis in the previous publication was on changes in fMRI 
BOLD activation associated with motor slowing. Here, we 
re-analysed the data with an emphasis on network model-
ling with DCM. The behavioural task, fMRI preprocessing 
methods, and the general linear model (GLM) analysis of 
BOLD activity (i.e., parametric and block design-based 
analysis) is identical to Bächinger et al. 2019. We reiterate 
the relevant methods for the reader’s convenience.

Participants

Of the 25 right-handed participants who took part in the 
experiment, 24 were included in the DCM analysis. The 
mean (SD) age was 23.8 (3.3) years and 50% were female. 
One participant was excluded because they did not show 
any motor slowing, but rather an increase in tapping speed, 
indicating that they did not perform the task as instructed. 
All participants were free of medication, had no history of 
neurological or psychiatric disease and were naïve to the 
purpose of the experiment. All experimental protocols were 
approved by the research ethics committee of the canton of 
Zurich (KEK-ZH 2015 − 0537) and participants gave writ-
ten informed consent to the study.

Behavioural task and analysis

The experiment consisted of two different conditions: fin-
ger tapping for either 30 s (slowing condition) or 10 s (con-
trol condition), each followed by a 30 s break. Tapping was 
performed alternating between index and middle finger at 
maximum speed. Participants were informed about the con-
dition prior to the start of tapping with a visual get-ready cue 
(randomly jittered between 2 and 3 s). The conditions were 
blocked within each fMRI run: One block was made up of 
four trials of the slowing condition, followed by four trials 
of the control condition, or vice versa. Each participant per-
formed two fMRI runs consisting of two blocks each. This 
resulted in 16 trials per condition. The starting condition of 
the first run (slowing or control condition) was alternated 
across participants and the second run had a counterbalanced 
order in relation to the first run. Additionally, an implicit 
baseline of 20 s was measured after each block (Fig. 1A). 
Behavioural data was analysed as described previously 
(Bächinger et al. 2019). Tapping and break intervals were 

1 3

2420



Brain Structure and Function (2024) 229:2419–2429

divided into 10 s bins and movement speed was normalised 
to the average speed of the control condition per participant. 
This normalised movement speed was subjected to a linear 
mixed effects model with the fixed factor time (i.e., time 
bins) and the random factor participant. Motor slowing was 
defined as a significant main effect of time (Fig. 1B).

fMRI acquisition and preprocessing

fMRI scans were acquired with a Philips Ingenia 3T whole 
body scanner. Prior to the functional runs, high resolu-
tion T1-weighted anatomical scans were acquired (voxel 
size = 1 mm3, 160 sagittal slices, matrix size = 240 × 240, 
TR/TE = 8.3/3.9 ms). These anatomical scans were used for 
functional image registration and normalisation. During the 
behavioural runs 360 volumes were acquired in each run 
(voxel size = 2.75 × 2.75 × 3.3 mm3, matrix size = 128 × 128, 

TR/TE = 2500/35 ms, flip angle = 82 degrees, 40 slices 
acquired in interleaved order for full brain coverage). Pre-
processing was performed using SPM12 (Wellcome Trust) 
with default parameters.

First, functional images were realigned to the aver-
age functional image. Then, the anatomical image was 
segmented, of which a transformation to MNI space was 
obtained, and the structural image was skull stripped. The 
functional images were co-registered to the anatomical 
image using normalised mutual information, and to MNI 
space through the forward transformation. The normalised 
images (2 × 2 × 2 mm3) were spatially smoothed with an 
8 mm isotropic Gaussian kernel at full-width-half maximum.

Fig. 1 (A) Experimental Design of fMRI study. 24 participants were 
either tapping for 30 s (slowing condition) or 10 s (control condition) 
during fMRI scanning. (B) Behavioural Results. Behavioural results 
showing a significant decrease in movement speed over 30 s of tap-
ping. (C) fMRI activations, associated with either tapping itself (motor 

network, blue) or motor slowing (increasing activation with decreasing 
movement speed, green). Regions of interest where defined based on 
the closest individual activations of PMd, SMA, and SM1. (D) Sche-
matic overview of the model space for DCM
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endogenous or intrinsic connectivity with fixed weights 
defined by the model, whereas B(j) reflects the weights 
of task-dependent modulations of connectivity, driven by 
external modulatory inputs uj . C  represents the weights for 
direct inputs, characterising how the extrinsic driving input 

u  directly influences brain regions.
In the scope of this study, the matrix A  represents the 

endogenous connectivity of the motor system (i.e., bidi-
rectional connectivity between SM1, PMd, and SMA; see 
also regions of interests). The term ujB(j) characterises the 
strength of the modulatory changes that occur due to motor 
slowing, which are modelled as a linear increase reflecting 
motor slowing. The final term Cu , describes the external 
driving input to the (pre-)motor system, modelled here as 
a constant input from prefrontal areas to either PMd, SMA, 
or both.

Regions of interest, endogenous connectivity, and 
its modulation

As a hypothesis driven method, DCM requires a neurobi-
ologically-plausible model of connectivity to be defined à 
priori. We therefore selected regions of interest which were 
associated with motor slowing. Specifically, we previously 
found that activity (pFWE < 0.05) of the left SM1, left PMd, 
and bilateral SMA (Bächinger et al. 2019) were inversely 
correlated with motor slowing of the right hand: All these 
regions showed an activation increase with decreas-
ing tapping speed. Based on this finding, we investigated 
here whether motor slowing is associated with changes in 
premotor-motor interactions. To that end we built several 
DCMs incorporating PMC, SMA, and SM1 (i.e., the three 
areas directly associated with motor slowing).

We extracted the BOLD signal time-series of our Effect 
of Interest from 4 mm radius spheres centred on the fol-
lowing three regions of interest: SM1, PMd, and SMA. The 
Effect of Interest consisted of our four regressors of inter-
est (tapping, parametric modulation of tapping, recovery, 
parametric modulation of recovery). All regions of interest 
were defined by taking the coordinates from the group-level 
analysis (Supplementary Material 1) and then extracting the 
closest peak-level activation on the single subject level.

The endogenous connectivity matrix (matrix A  in 
Equation (1)) was defined by previous anatomical studies: 
Specifically, we assumed that all regions are connected bidi-
rectionally based on previous anatomical findings (Luppino 
et al. 1993; Rouiller et al. 1994; Michely et al. 2015). Also, 
all included regions were assumed to be self-modulatory. 
Self-modulations were chosen to represent two-state mod-
els, which model two neuronal populations, an excitatory 
and an inhibitory, per region. In these two-state models, 
connections between two areas A and B are assumed to 

fMRI data analysis

fMRI analyses were also performed in SPM12. The first-
level model of each participant consisted of a general linear 
model. The GLM design matrix included four regressors of 
interest: tapping, parametric modulation of tapping, recov-
ery, and parametric modulation of recovery. The tapping 
regressor represented the time periods when the participant 
was tapping. The recovery reflects the 30 s rest condition 
after a tapping trial. The parametric modulation regres-
sor consisted of a linear increase over the tapping periods 
(reflecting the increase in motor slowing) or a linear increase 
over the recovery period after a 30 s tapping trial (but not a 
10 s tapping trial). The linear increase was the same across 
all participants and did not depend on the participant’s per-
formance. Importantly, the parametric modulation regressor 
was orthogonalized with respect to the tapping regressor. 
Note that the 30 s slowing condition and the 10 s control 
condition were modelled together in each regressor. For the 
parametric modulator, the slowing condition consisted of 
a linear increase in six bins of 5 s, and the control condi-
tion was made up of a linear increase in two bins of 5 s. 
Regressors of no interest in the GLM consisted of get-ready 
periods and six head movement parameters (translation and 
rotation along the x, y, and z-axis). All regressors except 
the six head movement parameters were convolved with a 
canonical hemodynamic response function. The two regres-
sors of interest were contrasted against the implicit baseline 
and were then subjected to a second-level random-effects 
analysis across participants. The second level analysis was a 
single one-sample t-test contrasting the regressors of interest 
against zero. P-values smaller than 0.05 family-wise error 
(FWE) corrected for multiple comparisons were considered 
statistically significant. Localisation of functional clusters 
was aided by the anatomy toolbox (Eickhoff et al. 2005).

Dynamic causal modelling

To investigate the changes in effective (directed) connectiv-
ity with motor slowing, we performed DCM (Friston et al. 
2003) using SPM12. In short, dynamic causal models are 
generative models that aim to capture directed interactions 
among brain regions or states based on à priori hypotheses. 
In DCM, changes in brain states over time are modelled in 
the form of a state-space equation:

ẋ =
(
A +

∑ m

j=1
ujB

(j)
)
x + Cu #(1)

In this equation, x  is the state vector representing the cur-
rent neuronal state and ẋ  refers to the change in the neuro-
nal state over time. The matrix A  represents the underlying 
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during motor slowing, we split the model space into model 
families with and without self-inhibition of SM1. Further, 
we wanted to investigate whether the premotor areas (SMA, 
PMd or both) shape the self-inhibition in SM1. Therefore, 
we set up multiple model families: (1) The top-down model 
family (in accordance with our main hypothesis outlined in 
the introduction), in which connections from SMA to SM1 
and from PMd to SM1 were modulated. (2) The bottom-
up model family, to verify whether our hypothesis may be 
inversed, meaning self-inhibition of SM1 may modulate 
SMA and PMd in a bottom-up fashion. In this model fam-
ily, connections from SM1 to SMA and from SM1 to PMd 
were modulated. (3) The selective premotor model family, 
to test whether one premotor area is much more strongly 
involved in modulations of motor slowing: only SM1-SMA 
or SM1-PMd connections were modulated in these models. 
(4) The null model family. In this model family, none of the 
connections between any of the premotor areas and SM1 
were modulated.

As mentioned, our main interest was to determine the 
necessity of self-inhibition in SM1, which is why these 
4 model families were further specified as either having 
self-inhibition of SM1 modulated or not. This resulted in 8 
model families: Top-down models without self-inhibition of 
SM1 (36 models, Fig. 2A), bottom-up models without self-
inhibition of SM1 (36 models, Fig. 2B), selective premotor 
models without self-inhibition of SM1 (12 models, Fig. 2C), 

be excitatory and connection within each area A or B are 
modelled as being self-inhibitory (Marreiros et al. 2008; see 
Supplementary Material 2 for more detailed information). 
The model thus aims to explain changes in BOLD signal via 
the interplay of excitatory and inhibitory dynamics within 
and across regions, thereby incorporating current knowl-
edge of the cortical microcircuit in which functional neu-
ronal dynamics arise from an interplay between excitatory 
pyramidal cells (which are mainly glutamatergic) and inhib-
itory interneurons (which are mainly GABAergic, McCol-
gan et al. 2020; Douglas and Martin 2004). As such, the 
two-state model is biologically more plausible and closer to 
the underlying anatomy of the human cortical microcircuit 
than single-state models (McColgan et al. 2020).

The extrinsic regressor (term u in Equation (1)) that 
modulates connectivity of the network (term B  in Equation 
(1)) reflected the effect of motor slowing. In the scope of 
this study, motor slowing was simplified as a linear change 
over time, as represented by the parametric modulation (see 
section fMRI data analysis) which served as input for this 
analysis. The driving input to the model was assumed to be 
a constant input from prefrontal areas (Michely et al. 2015).

Model space and model families

As our main interest was to test whether self-inhibition of 
SM1 is crucial to explaining modulation of connectivity 

Fig. 2 Model Families. One model family consisted of several models 
differing in which connections were modulated. The connections that 
may have been modulated within one model family are marked in red. 
The selective premotor models (C and G) either had modulations of 
the SMA-SM1 (purple) or the PMd-SM1 (green) interactions, but not 
both in the same model. The premotor interaction (SMA to PMd and 
PMd to SMA) were always modelled together. The driving input was 

set either to PMd, SMA, or both. Self-inhibition of SMA and PMd 
were only modulated in combination with a modulated connection 
with SM1. However, for model families A and E, the premotor-motor 
connections were also modulated without self-inhibition of the corre-
sponding premotor area. Self-inhibition of SM1 (orange) was assumed 
in all models of model families E-H
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through Bayesian model averaging (BMA) with an Occam’s 
window of 0.05 to inspect the model parameters. These 
BMA parameter estimates were then subjected to two fur-
ther analyses (Stephan et al. 2010). First, to identify the 
connections which were significantly modulated by motor 
slowing across participants, a group level post-hoc analysis 
on the maximum-à-posteriori (MAP) of the matrix B  was 
performed using Bonferroni-corrected t-tests. Secondly, a 
stepwise linear regression was performed to identify which 
of these modulated connections were directly associated 
with individual differences in motor slowing as quantified by 
the behavioural data. The regression model tested whether 
behavioural changes in tapping speed can be explained by 
the MAPs of the modulated connections.

Results

With DCM, we investigated if motor slowing is associated 
with changes in effective connectivity in the motor network. 
We first ran family-wise random-effects Bayesian model 
selection (Penny et al. 2010), which revealed the highest 
probability for the top-down model family with self-inhi-
bition of SM1. The variance explained by the models of 
this model family is on average 31.2% (see Supplementary 
Material 4 for variance explained per participant). How-
ever, evidence for this model family was not decisive, as 
the exceedance/posterior probability was < 0.95 (Fig. 3). 
Therefore, we performed Bayesian model averaging across 
the whole model space. The variance explained by models 
in the Occam’s window, which are the ones that were aver-
aged, can be found in Supplementary Material 5. The BMA 
revealed that motor slowing was accompanied by decreased 
connectivity in driving inputs to PMd and SMA, decreased 
connectivity from PMd to SM1, and decreased self-inhibi-
tion of SMA, as well as SM1. An increase in connectivity 
was found bidirectionally between PMd and SMA, bidirec-
tionally between SMA and SM1, unidirectionally from SM1 
to PMd, and for self-inhibition of PMd (Fig. 4).

To identify which of these connections were significantly 
modulated during motor slowing, we tested the maximum-
à-posteriori estimates against 0 (one-sample t-test with 
Bonferroni correction). Significant modulation was only 
found for the decrease of self-inhibition of SM1 (t(23) = 
-4.51, p < 0.001, Bonferroni corrected) and the decrease in 
driving inputs to the premotor areas (t(23) > 2.71, p < 0.05, 
Bonferroni corrected, Fig. 4). There was a trend that effec-
tive connectivity from SMA to SM1 increased with motor 
slowing but this effect did not survive Bonferroni correction 
(t(23) = 2.27, p = 0.033).

In an additional analysis, we tested whether any changes 
in effective connectivity were directly associated with the 

null models without self-inhibition of SM1 (6 models, 
Fig. 2D), top-down models with self-inhibition of SM1 (36 
models, Fig. 2E), bottom-up models with self-inhibition of 
SM1 (36 models, Fig. 2F), selective premotor models with 
self-inhibition of SM1 (12 models, Fig. 2G), null models 
with self-inhibition of SM1 (6 models, Fig. 2H).

In all model families, the models were set up (i) with and 
without modulation of premotor interactions between SMA 
and PMd (Fig. 1D, blue), and (ii) with the driving input set 
to either PMd, SMA, or both (Fig. 1D, red). The main mod-
ulations of the selective premotor model family were either 
a bidirectional modulation of SM1-SMA (Fig. 1D, purple) 
or SM1-PMd (Fig. 1D, green). In both cases, the involved 
premotor area was modelled with self-inhibition (Fig. 1D, 
orange). The top-down and bottom-up model family dif-
fered in whether the connections SM1-PMd, SM1-SMA, or 
both were modulated, with or without self-inhibition of the 
involved premotor area. All in all, the model space consisted 
of 180 models, split into 8 model families. A list of all the 
models can be found in Supplementary Material 3.

Model selection and statistical analysis

To identify the most likely model family given the data, we 
used random-effects family-level Bayesian model selec-
tion (Penny et al. 2004; Stephan et al. 2009). As the model 
selection did not reveal decisive evidence for a single win-
ning model family (family exceedance probabilities < 0.95, 
Fig. 3), all models across all model families were averaged 

Fig. 3 Exceedance probabilities of random-effects Bayesian model 
selection for defining winning model family. No model family reached 
the evidence threshold (> 0.95)
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BOLD signal increases with motor fatigue (Post et al. 2009; 
Van Duinen et al. 2007; Liu et al. 2003; Benwell et al. 2007), 
to the best of our knowledge, this is the first time such an 
increase in BOLD has been directly linked to the decrease in 
inhibition in SM1 during a fatiguing task. As such, our find-
ing further complements a larger body of neurophysiologi-
cal research showing that intracortical inhibition is reduced 
when measured directly after a fatiguing task (Bächinger et 
al. 2019; Benwell et al. 2006; Maruyama et al. 2006; Hunter 
et al. 2016; Latella et al. 2020). We thus extend our previous 
findings by showing that a linear decrease in self-inhibition 
of SM1 significantly contributes to the rise of BOLD signal 
during motor slowing.

While other fatiguing paradigms may share supraspinal 
mechanisms such as reduced intracortical inhibition, the 
underlying processes inducing this reduction may be differ-
ent. In fatiguing protocols using sustained maximal or sub-
maximal contraction, a decrease in voluntary drive parallels 
the development of fatigue (Post et al. 2009; Smith et al. 
2007; Gandevia et al. 1996; Schillings et al. 2003; Søgaard 
et al. 2006; Todd et al. 2003). This is in contrast to the motor 
slowing paradigm, in which the voluntary drive was not 
decreased despite a clear drop in movement speed (Madrid 
et al. 2018). Similarly, from pre to post motor slowing, a 
reduction in force-generating capacity of the exercised mus-
cles could not be shown (Rodrigues et al. 2009; Madrid et 
al. 2018), whereas, in other protocols, peripheral or muscle 
fatigue is a fundamental aspect. Motor slowing has however 
been associated with an increase in coactivation of ago-
nistic-antagonistic muscle groups (Bächinger et al. 2019; 
Rodrigues et al. 2009), leading to the assumption that the 
‘slowing’ is a result of imprecise coordination of muscular 
activation patterns rather than peripheral fatigue. Hence, the 
self-inhibitory changes may mainly reflect local interactions 

behavioural effects of motor slowing. In a stepwise linear 
regression analysis, we found that stronger connectivity 
from SMA to SM1 and from SM1 to SMA were linearly 
associated with more motor slowing (adjusted R2 = 0.514; 
p < 0.01). However, partial residual analysis revealed that 
these associations could have been driven by outlier values 
(Supplementary Material 6).

Discussion

High motor fatigability, as reflected by the phenomenon of 
motor slowing, is characterised by increased activity within 
the cortical sensorimotor network. This observation is 
somewhat paradoxical, since higher cortical BOLD activity 
has been associated with higher tapping speed when tested 
in a non-fatigued state (Rao et al. 1996; Schlaug et al. 1996; 
Sadato et al. 1997; Jäncke et al. 1998b; Jäncke, Peters, Jän-
cke et al. 1998a, b; Deiber et al. 1999; Agnew et al. 2004; 
Lutz et al. 2004). Here, we used DCM to test how motor 
slowing modulates the interaction between PMd, SMA, 
and SM1. Our main result shows that motor slowing was 
characterised by a significant decrease of (i) SM1 self-inhi-
bition, and (ii) excitatory driving inputs to both premotor 
areas (SMA and PMd). We further observed an increase in 
SMA to SM1 connectivity at a trend level.

DCM revealed that self-inhibition of SM1 decreased dur-
ing motor slowing. Interestingly, the driving inputs to the 
premotor areas decreased significantly, while interactions 
between premotor and motor areas only reached trend level 
significance for a connectivity increase from SMA to SM1. 
This suggests that the release of self-inhibition in SM1 is the 
major contributor to the increase in BOLD activity typically 
observed during motor slowing. While it is well known that 

Fig. 4 BMA model results. Arrows with 
triangle heads represent (self-)inhibi-
tory connectivity, the other arrows 
represent facilitatory connectivity. 
Increase in connectivity or self-inhibi-
tion with increasing motor slowing are 
shown in red, decrease in connectivity 
or self-inhibition with increasing motor 
slowing are shown in blue. The arrows 
towards PMd and SMA reflect the 
constant driving input over the whole 
tapping period. p < 0.05 uncorrected, 
*p < 0.05 Bonferroni corrected
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Limitations

A principal limitation of DCM is that interpretations can 
only be made for the investigated model space. The regions 
included in the analysis were chosen, because they showed 
an increase in BOLD signal with motor slowing. Therefore, 
the interpretation of our results is limited to interactions 
between PMd, SMA, and SM1. We chose the excitatory 
driving input to represent unspecific projections from 
upstream regions to the premotor areas. We took this deci-
sion because our previous work revealed that, even though 
subcortical areas are activated during the motor slowing 
task, their activity changed only insignificantly over time. 
As such it remains an open question which area(s) might 
cause the observed increase of BOLD activity within the 
cortical motor network and the field will probably have to 
develop new approaches for addressing this question.

We applied BMA since there was no winning model fam-
ily. BMA offers the advantage that it estimates the param-
eters for all plausible candidate models, thereby accounting 
for uncertainty about both (i) the model parameters and (ii) 
the underlying true model. The final parameter estimates 
are obtained according to the posterior probabilities of the 
associated models. This has several advantages compared 
to single-model selection (Hinne et al. 2020) including 
that BMA is rather robust against model misspecification 
and that it has been shown to result in optimal predictions 
because it better mitigates errors which are introduced as the 
‘true’ model cannot always be found. The conclusions we 
draw from our analysis do not propose a specific winning 
model of effective connectivity between premotor areas and 
sensorimotor cortex. Instead, we identified specific model 
parameters which changed significantly across all models 
with motor slowing.

Conclusion

Our DCM analysis indicates that a reduction in self-inhibi-
tion of SM1 explains the increase in BOLD activation that 
occurs during motor slowing, even though it is not directly 
associated with the behavioural decrease in movement 
speed. Furthermore, we show that premotor-motor interac-
tions are only moderately modulated by motor slowing, but 
that the driving input to the cortical motor network appears 
to increase. This finding emphasizes that processes upstream 
of the premotor-motor areas contribute to the changes occur-
ring in the cortical sensorimotor network when fatigability 
increases during fast finger tapping and future research has 
to identify the neurobiological substrate of this effect.
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within SM1. Thus, our findings of decreased self-inhibition 
in SM1 are in line with electrophysiological measure-
ments also in other fatiguing paradigms, even though motor 
slowing is thought to result from supraspinal mechanisms, 
whereas in other fatiguing paradigms, muscle fatigue is an 
important factor. We further found that the driving input to 
the cortical premotor areas decreases during motor slow-
ing. Despite this finding being consistent with the reduction 
in tapping speed, the decrease in facilitatory input makes 
it unlikely that influences from other areas drive the high 
activity in SM1, PMd, and SMA. This is interesting because 
the driving input to premotor areas seems to play a more 
important role for motor slowing than premotor-primary 
motor interactions. Where these driving inputs originate has 
yet to be defined, but basal ganglia or the cerebellum via the 
thalamus are likely candidates based on previous research 
(Liu et al. 2003; Van Duinen et al. 2007; Post et al. 2009; 
Hou et al. 2016; Bächinger et al. 2019). The cerebellum is 
particularly interesting, as it has been found to be involved 
in the continuous monitoring of movement rates, as well 
as in regulating movement rhythmicity via the brain stem, 
basal ganglia, and thalamus (Scott 2004; Bastian 2006; 
Pisotta and Molinari 2014; Therrien and Bastian 2019).

Concerning premotor-motor interactions, we found a 
trend-level increase in effective connectivity from SMA to 
SM1 with motor slowing, and the stepwise linear regres-
sion analysis hinted that stronger effective connectivity 
between SMA and SM1 was associated with more slowing 
on an individual level. SMA is known for its importance of 
controlling internally generated movements through projec-
tions to M1 (Samuel 1997; Konoike and Nakamura 2020). 
In this regard, SMA has not only been linked to the temporal 
sequencing of movements (Tanji 2001), but also to rhythm 
production itself (Konoike and Nakamura 2020). Increased 
SMA activity has been proposed to be related to the elevated 
difficulty in motor control (Kawashima et al. 1999). In other 
fatiguing paradigms, SMA has been linked to effort percep-
tion (Zénon, et al. 2014; Sharples et al. 2016; Emanuel et al. 
2021), with modulation of SMA leading to changes in per-
ceived effort. However, even though interactions between 
premotor and primary sensorimotor cortex might contribute 
to motor slowing to some extents, our study revealed only 
weak evidence for this hypothesis, and it seems likely that 
other, more complex neuronal interactions with a larger net-
work may underlie the observed behavioural outcome.

In summary, these results revealed additional evidence 
supporting the hypothesis that motor slowing is associated 
with a release of inhibition in SM1. Additionally, the driv-
ing input coming from other (motor) areas is essential for 
explaining the network modulations occurring during motor 
slowing.
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