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Abstract: Allostatic self-efficacy (ASE) represents a computational theory of fatigue and depression.
In brief, it postulates that (i) fatigue is a feeling state triggered by a metacognitive diagnosis of loss of
control over bodily states (persistently elevated interoceptive surprise); and that (ii) generalization of
low self-efficacy beliefs beyond bodily control induces depression. Here, we converted ASE theory
into a structural causal model (SCM). This allowed identification of empirically testable hypotheses
regarding causal relationships between the variables of interest. Applying conditional independence
tests to questionnaire data from healthy volunteers, we sought to identify contradictions to the
proposed SCM. Moreover, we estimated two causal effects proposed by ASE theory using three
different methods. Our analyses identified specific aspects of the proposed SCM that were inconsistent
with the available data. This enabled formulation of an updated SCM that can be tested against
future data. Second, we confirmed the predicted negative average causal effect from metacognition
of allostatic control to fatigue across all three different methods of estimation. Our study represents
an initial attempt to refine and formalize ASE theory using methods from causal inference. Our
results confirm key predictions from ASE theory but also suggest revisions which require empirical
verification in future studies.

Keywords: allostatic self-efficacy; fatigue; depression; causality; structural causal model; directed
acyclic graph; d-separation; conditional independence; average causal effect

1. Introduction

Fatigue is a prominent symptom of major clinical significance in numerous disorders
across medical disciplines [1,2]. It is fundamentally disabling for patients and profoundly
affects their quality of life [3]. Fatigue is a common feature across a wide range of immuno-
logical and endocrine disorders, cancer, and neuropsychiatric diseases. In particular, it
constitutes one of the core diagnostic criteria of major depression in standard psychiatric
classification schemes (ICD-10 and DSM-5; Refs. [4,5]).

The clinical concept of fatigue is a heterogeneous construct, and the subjective percep-
tion of chronic fatigue needs to be distinguished from objectively observable fatiguability
of cognitive and motor processes [6] as well as from tiredness, which not only differ in
phenomenology but are thought to be mechanistically distinct [7]. This study focuses on
subjectively perceived fatigue.

The pathophysiological mechanisms leading to fatigue are likely diverse [6]. Previous
theories have focused on a variety of neurophysiological, immunological, and inflammatory
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processes. Unfortunately, there are no mechanistically interpretable clinical tests available
for fatigue that could be used to guide individual treatment [6].

More recently, a novel perspective on fatigue has been proposed—the ‘allostatic self-
efficacy’ theory (ASE; Refs. [6–8]). The ASE theory is based on computational concepts
of brain–body interactions [7,8] which, in turn, are conceptually related to and inspired
by Bayesian theories of perception (predictive coding; Ref. [9]) and action (active infer-
ence; Ref. [10]). Given these Bayesian roots, ‘beliefs’—i.e., probabilistic representations of
latent variables—therefore play a central role in the ASE theory. However, in its current
formulation, the theory does not explicitly comment on whether these beliefs are conscious
or subconscious.

The ASE theory emphasizes the role of two cognitive processes for fatigue: intero-
ception and metacognition. Interoception corresponds to the perception of bodily states
and is of major importance for understanding determinants of mental health [11,12]. Many
contemporary concepts of interoception are grounded in Bayesian theories of perception
and conceptualize interoception as an inference process based on the brain’s generative
model of sensory inputs from the body [8,12–16]. More specifically, interoception can be
conceptualized as “inferences about bodily (physiological and biochemical) states that are
coupled to regulatory processes which serve to control these states” [17]. Metacognition
can be summarized as ‘cognition about cognition’ [18], comprising a variety of evaluation
processes by which the brain monitors its own performance. Building on a generic mathe-
matical model of brain–body interactions, the ASE theory describes how the brain attempts
to control bodily states via monitoring interoceptive surprise (as an index of the degree of
dyshomeostasis; Ref. [7]).

In brief, the ASE theory proposes that the subjective experience of fatigue arises when,
in a situation of persistent dyshomeostasis (and thus enduringly elevated interoceptive
surprise), the brain arrives at the metacognitive diagnosis that its control over bodily
states is failing; a condition also referred to as low allostatic self-efficacy. Put differently,
the ASE theory views fatigue as a feeling state that arises from a specific metacognitive
process—i.e., the insight that regulatory actions are not capable of reducing interoceptive
surprise—and which signals the imperative need to rest because active regulatory actions
fail to resolve dyshomeostasis. While rest also represents a regulatory action, here, we
contrast it to targeted regulatory actions that involve active behavior of an overt or latent
(autonomic nervous system related) nature. The theory predicts that if rest cannot resolve
dyshomeostasis and thus reduce interoceptive surprise, fatigue becomes entrenched and
chronic. Furthermore, if low self-efficacy beliefs generalize beyond the body, leading to a
general sense of helplessness and perceived lack of control, this is postulated to trigger the
onset of depression [7,19].

At present, several explanations of clinically relevant fatigue exist; however, all of
these are restricted to specific disorders, such as diseases due to infections, inflammation,
or autoimmune processes. For example, classical accounts of fatigue are mainly related to
infectious disorders and the associated ‘sickness behavior’ (for a review, see [20]). Broader
conceptualizations, with links to cognition, exist but are restricted to inflammatory con-
ditions (for a review, see [21]). In addition, concepts of fatigue have been proposed for
other specific disorders; for example, Heitmann et al. (2022; Ref. [22]) interpreted fatigue in
multiple sclerosis as the consequence of inflammation-induced reduction in monoaminergic
transmission and subsequent impairment of reward processing. By contrast, so far, the ASE
theory is arguably the only general concept of fatigue that explains its ubiquitous occurrence
across chronic disorders (with fundamental differences in the underlying pathophysiology)
and combines biological, cognitive, and computational (algorithmic) perspectives. The
theory offers testable predictions based on either (i) computational quantities (prediction
error or surprise) which can be estimated from behavioral and/or neurophysiological data
or on (ii) self-reported data about perceived control over bodily states (metacognition of
allostatic control). In this study, we focus on the latter option.
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Empirically, there is initial evidence that metacognition of allostatic control—as mea-
sured by a self-report questionnaire—is inversely associated with fatigue, as predicted by
ASE theory [19]. However, a comprehensive investigation of the predictions made by the
ASE theory is still lacking to date. Furthermore, as with almost all disease concepts in
psychiatry, ASE theory has been formulated verbally, but not as a precise causal model.

Here, we present an initial attempt to tackle the latter issue. To this end, we identify
variables and causal relations that are part of the ASE theory, namely metacognition of
allostatic control (M; specifically, the feeling of being in control over one’s own bodily
states), fatigue (F), general self-efficacy (S), and depression (D). We then formalize the
causal structure implied by the ASE theory in the language of causal inference, more
precisely, in the form of a structural causal model (SCM; Refs. [23–25]). Notably, the
proposed SCM only contains variables and relations that are explicitly mentioned by the
ASE theory in its current formulation [7]. In contrast to classical probabilistic models, an
SCM induces not only an observational distribution but also a set of so-called interventional
distributions. In other words, an SCM predicts how a system reacts under interventions [26].
We made use of a publicly available empirical dataset to test key aspects of the structure of
the proposed SCM. Moreover, we used established methods for the estimation of average
causal effects, focusing on central aspects of the ASE theory.

2. Materials and Methods
2.1. Empirical Dataset

In this work, we used data from a previous study conducted at the Translational Neu-
romodeling Unit (TNU) Zurich, the perception of breathing in the human brain (PBIHB)
study; a detailed description of the dataset can be found elsewhere [27]. It comprises
behavioral, questionnaire, and neuroimaging data from 60 healthy individuals. The ques-
tionnaire data used for our analysis are freely available for download from the Zenodo open
data repository at https://doi.org/10.5281/zenodo.10992529 (accessed on 12 December
2024). Participants completed a battery of psychological questionnaires assessing subjective
affective measures, both general and breathing-specific subjective interoceptive beliefs, as
well as measures of general positive and negative affect, resilience, self-efficacy, and fatigue.

For our analysis, we focused on the following measures as representations of the
central quantities of the ASE theory:

• fatigue (F): Fatigue Severity Scale (FSS)
• general self-efficacy (S): General Self-Efficacy Scale (GSES)
• depression (D): Centre for Epidemiologic Studies Depression Scale (CES-D)
• metacognition of allostatic control (M): Sum of the subscales 3 (not worrying) and 8

(trusting) of the Multidimensional Assessment of Interoceptive Awareness (MAIA3,8).

One important caveat is that, to our knowledge, there does not yet exist a measure
specifically developed for the construct of M (metacognition of allostatic control, i.e., the
feeling of being in control over one’s own bodily states). In this study, as a proxy measure,
we used the sum of the subscales 3 and 8 of the MAIA questionnaire. These subscales
reflect an individual’s tendency not to experience distress in response to bodily inputs
signaling dyshomeostasis and to perceive the body as a safe place, respectively. The sum of
these subscales was used in a previous study testing predictions from ASE theory [19] and
may currently represent the best approximation to M that is easily applied in practice.

2.2. SCM of the ASE Theory

An SCM [23,25] over variables X = [X1, . . . , Xn] comprises a set of structural equations
and distributions of the noise variables (a formal definition of an SCM is provided in
Appendix Definition A1). The structural equations, together with the noise distributions,
induce the observational distribution PX as a simultaneous solution to the structural
equations [26]. In addition to the observational distribution, an SCM induces interventional
distributions. Each intervention denotes a scenario in which we fix a certain subset of the
variables to a certain value, e.g., Pdo(X1 :=x1)

.

https://doi.org/10.5281/zenodo.10992529
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We restricted our formulation of an SCM of the ASE theory to variables and relations
that the current formulation of the ASE theory [7] explicitly comments on. Additionally,
we considered the effects of the variables age (A) and gender (G), which are not directly
part of the ASE theory, but are known to be associated with several variables of the SCM
and may act as confounders. Under assumptions of linearity and normality, the SCM of the
ASE theory takes the following form:

A = Na (1)

G = Ng (2)

M = θ1 A + θ2G + Nm (3)

F = θ3M + θ4 A + θ5G + N f (4)

S = θ6 A + θ7G + Ns (5)

D = θ8F + θ9S + θ10FS + θ11 A + θ12G + Nd (6)

where A stands for age, G for gender, M for metacognition of allostatic control, F for fatigue,
S for general self-efficacy, and D for depression, and where Ni are jointly independent noise
variables. ∀i ̸= g, Ni follows a normal distribution and Ng is a Bernoulli random variable.

Figure 1 displays a graphical summary of the causal structure implied by the ASE
theory in the form of a directed acyclic graph (DAG) J0. The directed edge from metacogni-
tion of allostatic control (M) to fatigue (F) represents the prediction that fatigue arises as a
consequence of a metacognitive diagnosis by the brain—i.e., the brain concludes that it has
low control over its bodily states. When this low allostatic self-efficacy (for which fatigue is
the accompanying feeling state) is combined with beliefs of lack of control in other domains
than the body (low general self-efficacy), this is predicted to lead to the onset of depression.
These effects are represented by the directed edges from fatigue (F) to depression (D) and
from general self-efficacy (S) to depression (D). The DAG J0 in Figure 1 is representative of
the induced observational distribution P and the interventional distributions induced by
interventions on metacognition of allostatic control (M; Pdo(M:=m)), fatigue (F; Pdo(F:= f )),
or general self-efficacy (S; Pdo(S:=s)).

Figure 1. Directed acyclic graph (DAG) J0 summarizing the key proposal of the allostatic self-efficacy
theory (ASE; Ref. [7]). The DAG J0 is representative of the induced observational distribution P
and the interventional distributions induced by interventions on metacognition of allostatic control
(M; Pdo(M:=m)), fatigue (F; Pdo(F:= f )), or general self-efficacy (S; Pdo(S:=s)). The other variables in
the graph are depression (D), age (A), and gender (G). Black edges represent causal directions as
proposed explicitly by the ASE theory, grey edges represent effects from age and gender that are not
explicitly part of the ASE theory but are included to account for potentially confounding effects.

When taking a closer look at the causal graph in Figure 1, there are a number of points
worth highlighting. (i) There is no direct link between metacognition of allostatic control
(M) and general self-efficacy (S). (ii) There is no direct link between metacognition of
allostatic control (M) and depression (D). All of its influence is mediated by fatigue (F).
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(iii) There is no direct link between fatigue (F) and general self-efficacy (S). While these
three links are, in principle, plausible causal influences, they were not included in the
original formulation of the ASE theory [7]. Whether these links should be included in a
revision of the ASE theory can, in principle, be tested using methods of causal inference,
given appropriate readouts of the involved quantities and relying on the assumption of the
Markov condition.

2.3. Statistical Analysis

Our hypotheses, as well as the entire analysis, were pre-registered in a time-stamped
analysis plan that is publicly available on the Zenodo open data repository at https://
doi.org/10.5281/zenodo.10559656 (accessed on 12 December 2024). Below, we explicitly
highlight any deviations from the pre-specified analysis plan. The analysis code is available
at https://github.com/alexjhess/pbihb-ase-causality (accessed on 12 December 2024). The
analysis pipeline underwent an internal code review by a researcher not involved in the
initial data analysis to identify errors and ensure the reproducibility of our results.

2.3.1. Causal Structure of ASE Theory in the PBIHB Dataset

Learning causal structure from observational data is inherently difficult. One reason
for this is the existence of models that are observationally but not interventionally equiv-
alent [25,26,28,29]. This has several implications (e.g., see [26]), one of them being that,
without assumptions, it is impossible to learn causal structures from observational data.

In graphical models, the Markov condition (see, e.g., [30]) is a formalization of the
following principle (sometimes referred to as Reichenbach’s common cause principle):
If two random variables X and Y are dependent, then there must be some cause–effect
structure that explains the observed dependence. That is, either X causes Y, or Y causes
X, or another unobserved variable H causes both X and Y, or some combination of the
aforementioned [31]. A formal definition of the Markov condition is presented in Appendix
Definition A2. The Markov condition establishes a connection from graphical separation
properties (d-separation; see Appendix Definition A3 for a formal definition) to conditional
independencies in the distribution. Any distribution induced by an acyclic SCM satisfies
the Markov condition with respect to the corresponding graph [25,32]. Hence, the Markov
condition is typically considered to be a mild assumption.

Assuming that the observational distribution P induced by the SCM of the ASE theory
(Equations (1)–(6)) is Markov with respect to the DAG J0, we tested whether we found
any contradictions to the structure of the DAG J0 in the PBIHB dataset. More precisely, we
examined the three predictions described in the last paragraph of Section 2.2 and formalized
them as part of our pre-registered Hypothesis 1: Data from the PBIHB study satisfy the
following conditional independence statements:

(i) M ⊥⊥ S | A, G
(ii) M ⊥⊥ D | F, A, G and M ⊥⊥ D | F, A, G, S
(iii) F ⊥⊥ S | A, G and F ⊥⊥ S | A, G, M

As a statistical test for conditional independence, we used an asymptotic χ2 test on
the mutual information for conditional Gaussians (MIcg) for mixed discrete and normal
variables, as implemented in the R package bnlearn [33], using a significance level α = 0.01
(Bonferroni corrected).

Since conditional independence testing is a difficult statistical problem [34], we vali-
dated our results using two alternative methods: a kernel conditional independence test
(KCI; Ref. [35]) as implemented in the R package CondIndTests, and a test based on the
generalized covariance measure (GCM; Ref. [34]), as implemented in the R package Gener-
alisedCovarianceMeasure. These additional tests of conditional independence were not
part of our pre-specified analysis. We decided to conduct these additional tests to evaluate
the robustness of our results across different methods of conditional independence testing
(i.e., a sensitivity analysis). We used the same significance level α = 0.01 for the KCI- and
the GCM-based tests to ensure compatibility with the pre-specified tests.

https://doi.org/10.5281/zenodo.10559656
https://doi.org/10.5281/zenodo.10559656
https://github.com/alexjhess/pbihb-ase-causality
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2.3.2. Estimating the Average Causal Effect from M to F

ASE theory predicts that fatigue is a feeling state that is triggered by a metacognitive
diagnosis of loss of control over bodily states. We aimed to test this prediction as part of
our Hypothesis 2: There is a negative average causal effect from metacognition of allostatic
control (M) to fatigue (F)

∂

∂m
Edo(M:=m)[F] = θ3. (7)

Adjusting for covariates is one of the various methods for estimating causal effects
from observational data. Suppose we are interested in finding the effect of M on F and
assume the factors deemed relevant to the problem are structured as in Figure 1. In other
words, we are interested in calculating the intervention distribution Pdo(M:=m)( f ). Given
a valid adjustment set (VAS) Z, here e.g., Z = (A, G), the intervention distribution can be
calculated (see [36–38]) as Pdo(M:=m)( f ) = ∑z P( f | m, z)P(z), since

Pdo(M:=m)( f ) = ∑
z
Pdo(M:=m)( f , m, z) (8)

= ∑
z
Pdo(M:=m)( f | m, z)Pdo(M:=m)(m, z) (9)

= ∑
z
Pdo(M:=m)( f | m, z)Pdo(M:=m)(z) (10)

= ∑
z
P( f | m, z)P(z) (11)

where, in the last step, one can use the fact that causal relationships are autonomous under
interventions (this property is sometimes referred to as ’autonomy’) [28].

In linear Gaussian systems, a causal effect from M to F can be approximated by
∂

∂mEdo(M:=m)[F] (see e.g., [28]). Assuming that Z is a VAS for {M, F} and {M, F}, Z follow
a Gaussian distribution, then the conditional F | M = m, Z = z follows a Gaussian
distribution as well. Hence, the mean of the distribution is given by

E[F | M = m, Z = z] = θ3m + btz (12)

for some θ3 and b. Equation (7) then follows from Equation (11).
One can estimate the conditional mean (Equation (12)) by regressing F on M and Z and

subsequently reading off the regression coefficients for M. Alternatively, more sophisticated
techniques for estimation of the average causal effect can be used, such as the propensity
score method [39] and double/debiased machine learning (DML; Ref. [40]). In Appendix B,
the two methods are described in more detail.

As pre-specified in our analysis plan, we conducted linear regression in combination
with a one-sided t-test on the regression coefficient of M to evaluate Hypothesis 2. We
compared our estimate of the causal effect from M to F obtained via linear regression
with the results obtained from using more sophisticated estimation techniques, i.e., the
propensity score method [39] and DML [40], following our pre-registered analysis plan.

2.3.3. Estimating the Average Causal Effect from F*S on D

Another prediction of ASE theory is that fatigue, in combination with a generalization
of low self-efficacy beliefs beyond bodily control, induces depression. We formalized this
prediction as part of our Hypothesis 3: There is a negative average causal effect of the
interaction term between fatigue and general self-efficacy (F*S) on depression (D)

∂

∂ f ∂s
Edo(F:= f ,S:=s)[D] = θ10. (13)

Evaluation of Hypothesis 3 followed the same line of reasoning as for Hypothesis
2. We used linear regression in combination with a one-sided t-test on the regression



Entropy 2024, 26, 1127 7 of 18

coefficient of F*S. Subsequently, we compared the resulting estimate to the results obtained
using the propensity score method and DML.

3. Results
3.1. Raw Data

Figure 2 shows a scatter plot matrix of the raw data. Displayed are the measures for
all variables A, G, M, F, S, D used in the analysis.
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Figure 2. Scatter plot matrix of raw data used in the analysis. Displayed are all the pairwise scatter
plots of the variables used for the analysis in a matrix format. For example, the scatter plot located
at the intersection of row 3 and column 2 is a plot of the variables age versus fatigue (as measured
by the FSS). The variables displayed are gender, age, fatigue (assessed by the FSS), metacognition
of allostatic control (assessed by the MAIA3,8), self-efficacy (assessed by the GSES), and depression
(assessed by the CES-D).

3.2. Results from the Statistical Analysis
3.2.1. Causal Structure of ASE Theory in the PBIHB Dataset

Table 1 displays the results from conditional independence testing to evaluate the three
predictions formulated as part of Hypothesis 1. The results can be summarized as follows:

Table 1. Results from different conditional independence test methods (MIcg, GCM, KCI) for the three
predictions formulated as part of Hypothesis 1. Results are presented for three different test methods.
An asterisk indicates statistically significant evidence against the null hypothesis (H0: variables are
conditionally independent) using the pre-specified level α = 0.01, which corresponds to a threshold
of p < 0.05 Bonferroni corrected for the multiple comparisons of the five tests, p-values are shown
in parentheses.

Hypothesis 1 d-Separation
Statement MIcg (p-Value) GCM (p-Value) KCI (p-Value)

(i) M ⊥⊥J0 S | A, G 22.044* (1.634 × 10−5) 4.254* (2.104 × 10−5) 26.451* (5.194 × 10−6)
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Table 1. Cont.

Hypothesis 1 d-Separation
Statement MIcg (p-Value) GCM (p-Value) KCI (p-Value)

(ii) M ⊥⊥J0 D | F, A, G 24.167* (5.652 × 10−6) −3.131* (0.001743) 8.513* (0.001346)
M ⊥⊥J0 D | F, A, G, S 16.883* (0.000216) −2.574 (0.010064) 2.992 (0.022626)

(iii) F ⊥⊥J0 S | A, G 13.010* (0.001496) −3.390* (0.000700) 13.613* (0.001279)
F ⊥⊥J0 S | A, G, M 4.057 (0.131500) −2.088 (0.036799) 2.013 (0.118908)

* p < 0.01.

(i) M ̸⊥⊥ S | A, G. We found significant evidence that metacognition of allostatic
control (M) and general self-efficacy (S) are not independent conditional on age (A) and
gender (G) across all three different conditional independence test methods. In other
words, we found a contradiction between d-separation within the DAG J0 and conditional
independence of M and S given A, G.

(ii) M ̸⊥⊥ D | F, A, G and M ⊥⊥ D | F, A, G, S. We found significant evidence that
M and depression (D) are not independent conditional on fatigue (F), A, G across all
three methods for conditional independence testing. This result was consistent with our
findings for (i), in the sense that if we add a directed edge from M to S in the DAG J0
(Figure 1), the only set of variables that d-separates M and D is the set F, A, G, S (and not
F, A, G). However, the results for conditional independence tests of M and D conditional
on F, A, G, S were mixed, with 2 out of 3 tests (GCM and KCI) not reaching the pre-
specified significance level α = 0.01. Hence, further evidence is needed to draw conclusions
regarding the statement M ⊥⊥ D | F, A, G, S.

(iii) F ̸⊥⊥ S | A, G and F ⊥⊥ S | A, G, M. When looking at the conditional independence
between F and S, the results depended on the set of variables that we conditioned on. We
found significant evidence that F and S are not independent conditional on A, G across
all three different test methods. However, we failed to reject the null hypothesis that F
and S are independent conditional on the set M, A, G consistently across all three different
test methods. This result is also in line with our findings for (i), in the sense that if we
add a directed edge from M to S in the DAG J0 (Figure 1), the only set of variables that
d-separates F and S is the set M, A, G.

3.2.2. Estimating the Average Causal Effect from M to F

As predicted by the ASE theory, we found significant evidence for a negative average
causal effect from metacognition of allostatic control (M) to fatigue (F) ∂

∂mEdo(M:=m)[F] = θ3

across all three different estimation methods. The resulting estimates θ̂3 for the VAS
Z = (A, G) are displayed in Table 2, alongside lower and upper bounds of a 95% confidence
interval for θ̂3, the corresponding value of the t-statistic, as well as the p-value for the one-
sided t-test.

Table 2. Average causal effect from M to F using Z = (A, G). Displayed are estimates of the average
causal effect from M to F θ̂3 across three different methods to adjust for the covariates Z = (A, G).
We report a point estimate θ̂3, the lower and upper bounds of a 95% confidence interval for θ̂3, the
value of the t-statistic, as well as the p-value for the one-sided t-test. An asterisk indicates statistical
significance using the pre-specified level α = 0.017 (Bonferroni-corrected).

Estimation
Method θ̂3 Confidence Interval t Value p-Value

linear
regression −0.4845* −0.712 −0.257 −4.259 3.968 × 10−5

propensity
score −0.4816* −0.717 −0.246 −4.092 6.689 × 10−5

DML −0.3872* −0.6481 −0.1262 −2.9082 0.0018
* p < 0.017.
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The results from our sensitivity analysis, i.e., estimating θ3 using a different VAS
Z = (A, G, S), are listed in Table 3. They confirmed the finding of a negative average causal
effect from M to F when using Z = (A, G) as a VAS. The main difference between the results
of the two analyses was that the second analysis using Z = (A, G, S) yielded a slightly
lower absolute value for θ̂3, as well as a non-significant p-value using the DML method.

Table 3. Average causal effect from M to F using Z = (A, G, S). Displayed are estimates of the
average causal effect from M to F θ̂3 across three different methods to adjust for the covariates
Z = (A, G, S). We report a point estimate of θ̂3, the lower and upper bounds of a 95% confidence
interval for θ̂3, the value of the t-statistic, as well as the p-value for the one-sided t-test. An asterisk
indicates statistical significance using the pre-specified level α = 0.017 (Bonferroni-corrected).

Estimation
Method θ̂3 Confidence Interval t Value p-Malue

linear
regression −0.3545* −0.610 −0.099 −2.785 0.0037

propensity
score −0.3775* −0.692 −0.063 −2.400 0.0098

DML −0.2049 −0.563 0.153 −1.122 0.1309
* p < 0.017.

3.2.3. Estimating the Average Causal Effect from F*S to D

We did not find evidence for the predicted negative average causal effect of the interac-
tion term between fatigue and general self-efficacy (F*S) on depression
(D) ∂

∂ f ∂sEdo(F:= f ,S:=s)[D] = θ10 across all three different estimation methods for either

VAS Z = (A, G) or Z = (A, G, M). Tables containing the resulting estimates for θ̂10 includ-
ing a 95% confidence interval and the value of the t-statistic, as well as the p-value for the
one-sided t-test, are listed in Appendix C.

4. Discussion

In this paper, we proposed a formulation of the allostatic self-efficacy (ASE) theory of
fatigue and depression in the language of causal inference. Specifically, we identified the
variables of central interest to the ASE theory and formulated a structural causal model
(SCM) under assumptions of linearity and normality. The SCM, as well as the induced
directed acyclic graph (DAG), describe the direction of causality among these variables.
The proposed SCM only contains variables and relations that were explicitly suggested
by the ASE theory (together with age and gender as potential confounders) in its current
formulation [7]. This is not meant to imply that other variables or connections cannot
be present or may not be included in future revisions of the theory. However, in this
preregistered analysis, the focus was entirely on the ASE theory in its current form. Using
the data of 60 healthy individuals from a previous study on interoception of breathing
and its relation with several psychopathological constructs [27], we tested the proposed
causal model empirically. Relying on the assumption of the Markov condition, we used the
dataset to search for contradictions to conditional independence statements (Hypothesis
1) that are implied by the graph structure (d-separation). In a second and third step, we
estimated the value of two causal effects that are predicted by the ASE theory using methods
of covariate adjustment, propensity scores, and double/debiased machine learning. As
predicted by the ASE theory, we found a statistically significant negative average causal
effect from metacognition of allostatic control (M) to fatigue (F) ∂

∂mEdo(M:=m)[F] = θ3 across
all three methods of estimation. Our sensitivity analysis using a different valid adjustment
set largely confirmed this finding with two out of three estimation methods yielding a
significant result.

The assumption of the Markov condition establishes a connection from d-separation
statements in a causal graph to conditional independence statements in the distribution.
In the analysis of Hypothesis 1, we tested concrete predictions implied by the DAG J0
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(Figure 1). (i) Using the data from the PBIHB study, we were able to reject the null hypothesis
of M ⊥⊥ S | A, G at the pre-specified level α = 0.01. (ii) We found significant evidence
against M ⊥⊥ D | F, A, G in the empirical dataset. However, in line with the graph structure
J0 implied by the ASE theory, we did not find clear evidence against M ⊥⊥ D | F, A, G, S.
That is, only one out of three conditional independence tests rejected the null hypothesis of
metacognition of allostatic control (M) being independent from depression (D) conditional
on the set F, A, G, S. (iii) We also found significant evidence against F ⊥⊥ S | A, G in the
empirical data. Yet, we did not find any evidence against F ⊥⊥ S | A, G, M. All three
conditional independence test methods consistently failed to reject the null hypothesis of
fatigue (F) and general self-efficacy (S) being independent given the set A, G, D, M.

There are a number of potential explanations for the results related to Hypothesis
1. The most straightforward explanation is that the proposed causal model is incorrect.
This could include the presence of additional edges between nodes, as well as variables
that were not considered, acting as mediators or confounds or a combination of all of the
aforementioned. For example, although ASE theory does not make an explicit statement
about a direct link between metacognition of allostatic control (M) and general self-efficacy
(S), it is plausible to assume the existence of a directed edge from M (the feeling of control
over bodily states) to S (an individual’s general expectation of personal mastery and
control [41]). The construct of S is closely related to concepts of metacognition (see, e.g., [42])
and represents a ’global’ construct of self-beliefs about one’s capacity to achieve goals and
overcome adversity; this can be understood as including more ’local’ domain-specific forms
of self-efficacy, such as metacognition of allostatic control. From this viewpoint, the idea
that metacognition of allostatic control (M) may contribute to (and thus influence) general
self-efficacy (S) beliefs is therefore not entirely unreasonable and would be a potential
explanation for the results of (i) and (iii). More precisely, a directed edge from M to S
would render M and S d-connected, since there would always exist a path between M and
S that is not blocked by any set of variables. This cause–effect structure would explain
the observed dependence between the two variables in the empirical dataset according
to Reichenbach’s common cause principle [31]. Another consequence of introducing an
edge from M to S would be that the set of variables that d-separates F and S would consist
of variables A, G, M and not only A, G, which corresponds to our findings for (iii). The
same is true for the set of variables d-separating M and D, which would consist of variables
F, A, G, S and not F, A, G in this case, potentially explaining our findings for (ii). However,
since the evidence for M ⊥⊥ D | F, A, G, S was mixed, further research is needed to bring
clarity to the question of the (conditional) independence of M and D.

The revised DAG J1 (Figure 3) provides a graphical summary of the above considera-
tions regarding the results related to Hypothesis 1. From DAG J0 to J1, we added a directed
edge from M to S. However, there are several other potential explanations for the observed
results, so this example should by no means be taken as ’the correct model’. If anything,
this should be regarded as an updated hypothesis to be tested in future investigations.

One of our reviewers wondered why we did not compare different graph structures
against each other by evaluating how well they fit the empirical data. In causal inference,
this approach would belong to the class of score-based methods for causal discovery [28].
This is certainly an interesting alternative strategy, provided a suitable generative model
exists, and may well be adopted in future work on this topic. By contrast, the approach
in this work belongs to the category of independence-based methods for causal structure
learning. It consists of specifying a theory in the form of an SCM and subsequently testing
which parts of the associated DAG J0 are inconsistent with empirical data using conditional
independence tests, which subsequently leads to an amended DAG J1. This was particularly
well suited for our problem, since the DAG J0 was based only on the variables and relations
explicitly suggested by ASE theory [7] that we wanted to examine and refine.
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Figure 3. Updated directed acyclic graph (DAG) J1 of the allostatic self-efficacy theory (ASE; Ref. [7])
providing a potential explanation for the observed results from analysis of Hypothesis 1. Modifica-
tions from DAG J0 to J1 are shown in red.

Concerning Hypothesis 2, we found evidence for a negative average causal effect from
metacognition of allostatic control (M) to fatigue (F) ∂

∂mEdo(M:=m)[F] = θ3 across all three
estimation methods (covariate adjustment, propensity scores, DML) for two different VAS.
This is in line with the prediction by ASE theory that the subjective experience of fatigue
arises as a consequence of a metacognitive diagnosis that the brain’s control over bodily
states is failing (low allostatic control). This also confirms findings from previous research,
which identified metacognition of allostatic control (M) (operationalized by the sum of the
subscales 3 and 8 of the MAIA questionnaire) as associated with fatigue (F) scores [19]. Our
new results go beyond this previous finding, in the sense that the current study suggests a
direction of the effect, as opposed to purely associative statements. It is worth highlighting
that the estimation of the causal effect from M to F would not be affected by the proposed
additional link between M to S as suggested by the analysis results concerning Hypothesis
1 (see Figure 3), since the set A, G would still be a valid adjustment set (VAS).

With regard to Hypothesis 3, we did not find evidence for a negative average causal
effect of the interaction term between fatigue and general self-efficacy (F*S) on depression
(D) ∂

∂ f ∂sEdo(F:= f ,S:=s)[D] = θ10. The present work is, to the best of our knowledge, the
first attempt to investigate the predicted influence of the interaction between fatigue and
general self-efficacy on depression. Across all three different estimation methods and using
different VAS, we found, if anything, very small effects. However, one may rightfully
question whether the sample in this study was adequate for testing Hypothesis 3, at least
in the context of the ASE theory. This is because our participants were drawn from the
general population and, not surprisingly, did not show pronounced levels of depression
(compare Figure 2). By contrast, the predictions of ASE theory concerning depression
assume a clinically relevant state of depression [7]. Therefore, the potential interaction
effect F*S on D remains an open question that should be addressed in the future using
samples with clinically relevant levels of depression. In the context of depression, it is
worth mentioning that the current formulation of the ASE theory does not make any explicit
reference to emotional states. This could potentially be addressed in future developments
by extending the generic Bayesian model of brain–body interactions that represents the
foundation of the ASE theory [7] with developments from active inference which introduce
explicit representations of valence (e.g., [43]).

One might ask why we did not use a more complex causal model and examine
any potential bidirectional causal effects between the variables of interest, e.g., fatigue
and depression. Indeed, the lack of bidirectional causal influences in our model can be
regarded as a limitation, in that it prevents identification of an optimal causal structure
from data without constraints. However, the objective of the current study was to examine
whether the causal structure implied by a particular theory (i.e., ASE) is compatible with
available cross-sectional questionnaire data. Notably, the complexity of the proposed
SCM was commensurate with both the level of complexity of the ASE theory and the
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cross-sectional dataset, i.e., our model only contains those variables and relations that are
explicitly suggested by the ASE theory in its current formulation [7] and were measured
using available questionnaires. Nevertheless, should future formulations of the ASE
theory include bidirectional effects, the current methodological approach (i.e., conditional
independence tests in the context of DAGs) could be extended. Specifically, if longitudinal
timeseries data are available, DAGs can be extended in time, which allows testing cyclic
and bidirectional causal effects (for examples, see [44,45]), thus addressing the limitation
discussed above. Furthermore, if required by the theory to be tested, longitudinal data
would also enable one to consider the role of time. While not required for the purpose of the
current study (since the current formulation of ASE theory does not make any statements
about the temporal dynamics of variables and their relations), a more exploratory approach
could examine, for example, whether causal influences operate at particular time scales.
Such putative extensions could employ other methods of causal inference, e.g., Granger
causality [46] convergent cross mapping [47], or dynamic causal modeling (e.g., [48]), once
longitudinal timeseries data for the variables of interest become available.

The current study has strengths and limitations. Its strengths include the first concrete
formulation of the ASE theory in the language of causal inference: our proposal of an SCM
brings the content of a verbally formulated theory into the realm of concrete mathematical
equations. Together with the induced DAG, this provided a formal basis for analysis and
allowed us to identify a set of empirically testable hypotheses which may guide future
research. A second notable strength is that we used multiple independent methods, both
for conditional independence testing (Hypothesis 1) and for the estimation of causal effects
(Hypotheses 2 and 3). This enhances the robustness of our conclusions, since they do not
depend on assumptions and properties of any single method. Last but not least, all of our
hypotheses and statistical analysis procedures were pre-registered and specified in detail
in an ex ante analysis plan (https://doi.org/10.5281/zenodo.10559656 (accessed on 12
December 2024)). Preregistration is an important and effective protection for the robustness
of research, given the many degrees of freedom and the numerous cognitive biases that
scientists may inadvertently be affected by [49].

Turning to limitations, first, as in any observational study, one may question whether
the results may have been affected by (unknown or non-measured) confounding variables
(compare our discussion of the results from Hypothesis 1 above). Specifically, one limitation
is that our current analysis did not take sleep into account. While sleep is not an explicit
component of the ASE theory, previous work has repeatedly demonstrated that sleep
quality generally influences the level of fatigue (e.g., [19,50]). In the present study, we did
not examine the potential influence of sleep, since the available dataset did not include any
measures of sleep quality. This will be rectified in follow-up studies.

Second, our statistical approach made a number of assumptions, as explained in the
Methods. Most of these were standard assumptions and not specific to our study, but are
still worth keeping in mind, since violation of these assumptions may affect the results.
For example, our structural model assumed that effects are linear and random variables
(except gender) follow a normal distribution. Furthermore, as already discussed above,
our statistical approach did not take into account bidirectional causal interactions. This
is because our causal model is constrained by the explicit assumptions of the ASE theory
(which does not include bidirectional causal effects). Finally, conditional independence
testing, which is at the heart of causal discovery [38], is generally challenging [51]; we,
therefore, employed multiple independent tests to ensure our results were robust.

Finally, our dataset has several properties that deserve consideration. To begin with,
our dataset is cross-sectional and observational, which is the norm for studies in neuro-
science but challenging for causal inference. To facilitate causal inference, follow-up studies
could include interventions (e.g., cognitive interventions targeting M) and/or acquire
longitudinal data. Another issue is the question of sample size. While the size of our
sample (N = 60) was large for the neuroscientific focus of the original study, it was not
determined in advance for the questions addressed in the current study. Furthermore, the

https://doi.org/10.5281/zenodo.10559656
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question of what constitutes adequate sample sizes for causal inference from observational
data is complex and controversial [52]. It is therefore important to replicate our findings
in independent (and larger) samples. A third issue concerns the validity of the available
measurements. While validated self-report measures for fatigue, depression, and general
self-efficacy are available and were used in this study, a measurement tool specifically
developed for the construct of metacognition of allostatic control (M) is lacking so far.
Here, we followed previous research [19] and used a plausible proxy measure of M, i.e.,
the sum of two pre-specified subscales from a validated questionnaire on interoception,
MAIA. An important goal for future research is the development of readouts for M that
are fully validated and easily applied in practice. Ideally, such tests would go beyond
self-report measures and be implicit in nature, e.g., neurophysiological readouts similar to
the mismatch negativity.

5. Conclusions

In summary, our work provides a formal basis for testing predictions by the ASE
theory of fatigue and depression in the context of causal inference. We evaluated central
aspects of our proposed SCM using a publicly available dataset and provided an updated
version of the SCM that accounts for our empirical findings. In addition, we were able to
confirm previous findings regarding the association between metacognition of allostatic
control (M) and fatigue (F). Our analysis enabled us to quantify the direction, as well as
the sign, of the causal effect, i.e., we found a negative average causal effect from M to F

∂
∂mEdo(M:=m)[F] = θ3, as predicted by the ASE theory. Finally, we identified a number of
open questions that remain to be addressed in future research and that may help unravel
the mechanisms behind fatigue and depression.
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DAG directed acyclic graph
ICD-10 International Statistical Classification of Diseases and Related Health Problems,

10th revision
DSM-5 Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
A age
G gender
M metacognition of allostatic control
F fatigue
S general self-efficacy
D depression
N noise variable
F*S the interaction term between fatigue and general self-efficacy
PBIHB perception of breathing in the human brain
TNU Translational Neuromodeling Unit
FSS Fatigue Severity Scale
GSES General Self-Efficacy Scale
CES-D Centre for Epidemiologic Studies Depression Scale
MAIA Multidimensional Assessment of Interoceptive Awareness
MIcg mutual information for conditional Gaussians
KCI kernel conditional independence test
GCM generalized covariance measure
DML double/debiased machine learning
VAS valid adjustment set

Appendix A. Definitions

Appendix A.1. Structural Causal Model

We adopt the definition of SCMs according to [26]:

Definition A1. An SCM over variables X = [X1, . . . , Xn] comprises

• structural equations which relate each variable Xk to its parents PA(Xk) ⊆ {X1, . . . , Xn}
and a noise variable Nk via a function fk, such that Xk := fk(PA(Xk), Nk), as well as a

• noise distribution PN of the noise variables N = [N1, . . . , Nn]
T .

In a directed causal graph associated with an SCM, the nodes correspond to the variables
X1, . . . , Xn and there is an edge from Xi to Xj whenever Xi appears on the right-hand side of
the equation Xj := f j

(
PA

(
Xj

)
, Nj

)
. In other words, if Xi ∈ PA(Xj) the graph contains the

edge Xi → Xj. For this work, we assume that the graph does not contain any cycles. The
structural equations together with the noise distributions induce the observational distribution PX
of X1, . . . , Xn as a simultaneous solution to the equations.

Appendix A.2. Markov Condition

Definition A2. Given a DAG G over nodes X, we say that the distribution PX satisfies

(i) the global Markov property (MP) with respect to G if ∀ disjoint A, B, C ⊆ X
A d-sep B | C =⇒ A ⊥⊥ B | C

(ii) the local Markov property (MP) if ∀j Xj ⊥⊥ NDj |PAj

(iii) the factorization property if PX is absolutely constant with respect to a product measure
and ∀x∀j, p(xPAj) > 0 : p(x) = p(x1, . . . , xd) = ∏d

j p(xj|xPAj)

In the above definition, we used the following notation: NDj represents the non-
descendants of node Xj and PAj denotes all nodes that have a directed edge to node Xj.



Entropy 2024, 26, 1127 15 of 18

Appendix A.3. d-Separation

Definition A3. d-separation is a graphical criterion of whether two nodes are connected or not. Let
X, Y, Z disjoint.

(i) A path X = i1, . . . , im = Y is blocked by Z ⇐⇒ ∃ node ik with ik−1 → ik → ik+1 and
ik ∈ Z
OR ∃ node ik with ik−1 ← ik ← ik+1 and ik ∈ Z
OR ∃ node ik with ik−1 ← ik → ik+1 and ik ∈ Z
OR ∃ node ik with ik−1 → ik ← ik+1 and ik /∈ Z and DE(ik) ∩ Z = ∅

(ii) X, Y are d-connected given Z ⇐⇒ ∃X ∈ X, Y ∈ Y s.t. ∃ path between X and Y that is
not blocked

(iii) if X, Y are not d-connected, then they are d-separated. We sometimes write X d-sep Y | Z
or X ⊥⊥G Y | Z

Appendix B. Estimating Causal Effects Using Covariate Adjustment

Appendix B.1. The ‘Propensity Score’ Method

In a point treatment situation, one can adjust for a set of confounders Z = (A, G)
when estimating the effect of exposure M by weighting observations i by the inverse
probability weights

wi =
1

P(Mi = mi | Zi = zi)
(A1)

To increase statistical efficiency, one can use stabilized weights, e.g.,

swi =
P(Mi = mi)

P(Mi = mi | Zi = zi)
(A2)

When dealing with a continuous exposure variable M, one can use stabilized weights

swi =
f (mi)

f (mi | zi)
(A3)

where f (mi) is the marginal density function of M, evaluated at the observed value in unit
i, mi, and f (mi | zi) conditional density function of M given Z, evaluated at the observed
values in unit i, {mi, zi} [53]. Weighting observations i by swi, one can fit a causal model,
for instance a marginal structural model (MSM)

E[Fm] = β0 + θ3m (A4)

with continuous outcome fatigue F. The response variable Fm is the potential outcome that
could have been observed in a unit under study if that unit received a specific treatment
level m [54]. The expectation E[Fm] is the mean outcome if all units under study received a
specific treatment level m. Parameter θ3 then quantifies the causal effect of M on F [53].

Appendix B.2. Double/Debiased Machine Learning

DML removes the impact of regularization bias and overfitting on estimation of the
parameter of interest θ3 by using Neyman-orthogonal moments and cross-fitting [40]. One
application of DML is in the context of a partial linear regression model,

F = Mθ3 + k0(Z) + N f , E(N f | M, Z) = 0, (A5)

M = m0(Z) + V, E(V | Z) = 0, (A6)

with fatigue F, metacognition of allostatic control M, a VAS Z = (A, G) consisting of
confounding covariates and stochastic error terms N f and V. The confounding covariates
Z affect M and F via the functions m0 and k0, respectively. DML can be used to estimate θ3,
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i.e., the main regression coefficient that we would like to infer, which can be interpreted as
the average causal effect from M to F [55].

Appendix C. Results from Estimating the Average Causal Effect from F*S to D

Table A1. Average causal effect of the interaction term F*S to D using Z = (A, G). Displayed
are estimates of the average causal effect of the interaction term F*S to D θ̂10 across three different
methods to adjust for the covariates Z = (A, G). We report a point estimate of θ̂10, the lower and
upper bounds of a 95% confidence interval for θ̂10, the value of the t-statistic, as well as the p-value
for the one-sided t-test.

Estimation
Method θ̂10 Confidence Interval t Value p-Value

linear
regression 0.0281 −0.191 0.247 0.257 0.6010

propensity
score 0.0142 −0.151 0.180 0.172 0.5680

DML −0.2051 −0.476 0.066 −1.482 0.0691

Table A2. Average causal effect of the interaction term F*S to D using Z = (A, G, M). Displayed
are estimates of the average causal effect of the interaction term F*S to D θ̂10 across three different
methods to adjust for the covariates Z = (A, G, M). We report a point estimate of θ̂10, the lower and
upper bounds of a 95% confidence interval for θ̂10, the value of the t-statistic, as well as the p-value
for the one-sided t-test.

Estimation
Method θ̂10 Confidence Interval t Value p-Value

linear
regression 0.0671 −0.122 0.257 0.711 0.7599

propensity
score 0.0337 −0.159 0.227 0.350 0.6362

DML 0.0153 −0.283 0.314 0.100 0.5399
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