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ABSTRACT
Computational (generative) modelling of behaviour has considerable potential for clinical 
applications. In order to unlock the potential of generative models, reliable statistical 
inference is crucial. For this, Bayesian workflow has been suggested which, however, has 
rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) 
so far. Here, we present a worked example of Bayesian workflow in the context of a typical 
application scenario for TN/CP.

This application example uses Hierarchical Gaussian Filter (HGF) models, a family of 
computational models for hierarchical Bayesian belief updating. When equipped with a 
suitable response model, HGF models can be fit to behavioural data from cognitive tasks; 
these data frequently consist of binary responses and are typically univariate. This poses 
challenges for statistical inference due to the limited information contained in such data. 
We present a novel set of response models that allow for simultaneous inference from 
multivariate (here: two) behavioural data types. Using both simulations and empirical data 
from a speed-incentivised associative reward learning (SPIRL) task, we show that models 
harnessing information from two different data streams (binary responses and continuous 
response times) ensure robust inference (specifically, identifiability of parameters and 
models). Moreover, we find a linear relationship between log-transformed response times 
in the SPIRL task and participants’ uncertainty about the outcome.

Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. 
We argue that adopting Bayesian workflow for generative modelling helps increase the 
transparency and robustness of results, which in turn is of fundamental importance for 
the long-term success of TN/CP.
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INTRODUCTION
Psychiatry suffers from a dearth of tests that are based on biological or cognitive mechanisms 
(Kapur et al., 2012). In response, computational approaches to psychiatry begun gaining attention 
a decade ago (Montague et al., 2012). A particular focus has been on generative models and their 
potential for inference on individual disease mechanisms, as a basis for overcoming the limitations 
of contemporary symptom-based diagnostic classifications (Stephan & Mathys, 2014).

Computational approaches to psychiatry encompass two main branches: Translational 
Neuromodeling (TN) which is concerned with the development and validation of computational 
assays – i.e. generative models for inferring mechanisms underlying neurophysiology, behaviour, 
and cognition – and Computational Psychiatry (CP) which focuses on the application of these 
models to clinical questions such as differential diagnosis, stratification, and treatment prediction. 
Generative models represent a cornerstone of TN/CP because they (i) exploit the advantages of 
Bayesian approaches to inference, (ii) enforce mechanistic thinking, and (iii) provide estimates of 
system states and/or parameters that enable interpretable out-of-sample predictions by machine 
learning (an approach called generative embedding; for review, see Stephan et al., 2017).

However, there are numerous practical challenges for generative modelling. These include – but 
are not limited to – the choice of sensible priors for model parameters, identifiability both at 
the level of parameters and models, validation of the inference algorithm, as well as questions 
regarding model evaluation. Successfully managing these challenges is essential in order to obtain 
robust statistical results from Bayesian data analysis (BDA), which in turn is paramount to the 
success of TN/CP.

The motivation for this paper is twofold: First, we present a novel generative model in the 
framework of the Hierarchical Gaussian Filter (HGF; Mathys et al., 2011, 2014), a computational 
model for hierarchical Bayesian belief updating that has seen numerous applications in TN/CP 
(e.g. Hein et al., 2021; Iglesias et al., 2013; Lawson et al., 2017, 2021; Marshall et al., 2016; Powers 
et al., 2017; Sapey-Triomphe et al., 2023; Sporn et al., 2020). Our new generative model exploits 
two sources of information from behavioural responses, namely trial-wise predictions (binary 
responses) and associated response times (RTs). By exploiting two coupled streams of information 
for model inversion, we hoped to increase both parameter and model identifiability – issues which 
have proven challenging for some HGF applications (Bröker et al., 2018), particularly with binary 
response data (e.g. see Harrison et al., 2021; Iglesias et al., 2021). In order to acquire suitable data 
for this endeavour, we developed a novel speed-incentivised associative reward learning (SPIRL) 
task. In combination with a set of custom-built combined response models in the HGF framework, 
we demonstrate the utility of our dual-stream generative model, using both simulations and 
empirical data from the SPIRL task.

Second, we provide a worked example of Bayesian workflow that may usefully guide application 
of generative models in TN/CP, beyond the particular examples studied in this paper. This 
example extends previous tutorials that discussed a workflow for modelling behavioural data, 
but were restricted to frequentist (maximum likelihood) estimation (Wilson & Collins, 2019). We 
emphasise that the Bayesian workflow presented in this paper was not invented by us. Instead, 
it was derived from earlier proposals by others (Betancourt, 2020; Gelman et al., 2020; Schad 
et al., 2020; van de Schoot et al., 2021) and enriched with additional components, e.g. Bayesian 
comparison of model families (Penny et al., 2010). We focused on those steps of BDA that – 
independent from the chosen inference scheme – are particularly relevant for robustness of 
results from generative models.

METHODS
The analysis methods of this study were specified in a preregistered analysis plan (see section 
below for details). For consistency, we reuse text from our analysis plan in this Methods section, 
in adapted and extended form. We start by describing the behavioural learning task which was 
developed for this study. In what follows, we give a detailed summary of our modelling approach, 
both the development of novel response models combining different data modalities in the 
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framework of the HGF as well as their application within Bayesian workflow. Our analysis had the 
following two central aims:

Aim 1: A quantitative comparison of response models (for the HGF) that utilise binary 
and continuous-valued response data in different ways.

Aim 2: A quantitative assessment of whether (and how) parameters characterizing subject-
specific learning behaviour are associated with an individual’s measured response times.

ANALYSIS PLAN, DATA AND CODE AVAILABILITY

A version-controlled and time-stamped analysis plan was created, detailing the analysis pipeline 
ex ante. The analysis plan provides a more in-depth description of the analysis protocol and is 
provided at https://doi.org/10.5281/zenodo.10669944. For the analysis, a custom-built pipeline 
was implemented in MATLAB R2019b (The MathWorks, Natick, MA, USA; code available at https://
gitlab.ethz.ch/tnu/code/hessetal_spirl_analysis). Various open-source software packages were 
used for the analysis such as the HGF Toolbox (v7.1) as part of the ‘Translational Algorithms for 
Psychiatry-Advancing Science’ (TAPAS v6.0.1, commit 604c568) package (Frässle et al., 2021), 
the Variational Bayesian Analysis Toolbox (VBA, commit aa46573; Daunizeau et al., 2014) and 
the RainCloudPlot library (commit d5085be, Allen et al., 2021). Note that we used an updated 
version of TAPAS compared to what was stated in the analysis plan; this version already included 
functionalities to use combined response models with the HGF. All of these packages were included 
as submodules in the analysis code repository. The entire analysis pipeline underwent an internal 
code review (by a researcher not involved in the initial data analysis) in order to identify errors 
and ensure reproducibility of results. The data set used for the analysis is available on Zenodo 
(https://doi.org/10.5281/zenodo.10663643) in a form adhering to the FAIR (Findable, Accessible, 
Interoperable, and Re-usable) data principles (Wilkinson et al., 2016). We used Psychtoolbox-3 
(Kleiner et al., 2007) to program the task of this study. The code that we used to run the experiment 
in the lab is available at https://gitlab.ethz.ch/tnu/code/hessetal_spirl_task.

BEHAVIOURAL STUDY PROCEDURE

Participants

In total, 91 right-handed healthy individuals (59 females, 32 males; age 24.7 ± 4.3) completed 
the study. The data set consists of a pilot data set (N = 23) and a main data set (N = 68). For lack 
of a better term, we refer to the former as a ‘pilot’ data set; however, we emphasise that from 
the beginning, the designated purpose of this data set was to inform the specification of priors 
by independent data. The size of the pilot data set was determined by feasibility and resource 
constraints, the size of the main data set was informed by a set of simulation analyses assessing 
the validity of the family-level comparison procedure that was part of our primary research aim 
(see paragraph ‘Validation of model inversion’ for more details). All participants gave written 
informed consent prior to data acquisition and were financially reimbursed for their participation. 
The study was approved by the Ethics Commission of ETH Zurich (ETH-EK-Nr. 2021-N-05).

Our study applied the following exclusion criteria for participation: known psychiatric or 
neurological diseases (past or present), regular intake of medication (except contraceptives), 
current participation in other studies using pharmacological interventions or stimulation of brain 
nerves, and alcohol or drug intake during three days prior to the measurement.

Additionally, we excluded measured data sets from analysis according to quality criteria that 
had been pre-specified in the analysis plan. These criteria included: failure to complete the task 
and >10 ignored (no response and feedback) or irregular (RT <0.1s) trials. We also excluded data 
from participants with <65% correct responses (adjusted for the probabilistic nature of the task), 
which is consistent with previous work using a similar task in healthy populations (Iglesias et al., 
2013, 2021). Eleven of the participants were excluded because they did not meet our criteria 
for adequate data quality and one participant was excluded due to contradicting information 
regarding the exclusion criteria, leaving us with a data set of Ntotal = 79 (pilot data set Npilot = 20, 
main data set Nmain = 59; 52 females, 27 males; age 24.7 ± 4.4).

https://doi.org/10.5281/zenodo.10669944
https://gitlab.ethz.ch/tnu/code/hessetal_spirl_analysis
https://gitlab.ethz.ch/tnu/code/hessetal_spirl_analysis
https://translationalneuromodeling.github.io/tapas/
https://mbb-team.github.io/VBA-toolbox/
https://zenodo.org/record/3368186
https://doi.org/10.5281/zenodo.10663643
https://gitlab.ethz.ch/tnu/code/hessetal_spirl_task
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Behavioural paradigm

Each participant attended one experimental session during which they performed the SPIRL task 
(Figure 1). In this task, participants were required to learn the probabilistic association between 
two fractals and a monetary reward over a period of 160 trials. In each trial, participants were 
asked to select one of the two displayed fractals during a response window of 1.7s. After 1.7s from 
the trial onset, the outcome of the trial was revealed to the participant, i.e. whether the selected 
fractal was associated with a monetary reward on the given trial. Subsequently, a new response 
window started, and participants were again able to choose between the two fractals. Participants 
received visual feedback about their response times on every trial via a time bar. A customised 
payoff structure served to incentivise fast responses while still emphasizing the importance of 
correct predictions (Heitz, 2014). For details regarding the reward calculation, please refer to the 
analysis plan (Appendix A). Participants were informed about the payoff structure before the 
experiment. The trial structure is visualised in Figure 1A.

The probability of reward for one of the two fractals in the SPIRL task is shown in Figure 1B. 
The black dots indicate whether the respective fractal was rewarded on a given trial (1 = reward, 
0 = no reward). The reward probabilities of the two fractals were designed to be complementary 
(summing to 1 at any given point during the experiment). Thus, the reward probability of the 
second fractal was simply the mirrored trajectory of the displayed trajectory, and on every trial 
exactly one of the two fractals was rewarded. Critically, the underlying probabilistic associations 

Figure 1 The speed-incentivised 
reward learning (SPIRL) task. 
A shows the trial structure 
of the SPIRL task protocol. A 
yellow and a green fractal 
were presented on every 
trial together with a time bar 
indicating the remaining time 
of the 1.7s long response 
window. The participants had 
to predict on each trial, which 
fractal would be rewarded 
monetarily. After the response 
window, the trial outcome was 
revealed (reward/no reward) 
concurrently with the start 
of the new response window 
of the next trial. In B, the 
probability of reward for one 
of the two fractals over the 
entire 160 trials is displayed 
(black line). The individual 
trial outcomes for this fractal 
are indicated by black dots 
(1 = reward, 0 = no reward). The 
reward probabilities of the two 
fractals were complementary 
(summing to 1) across the 
entire task. The colour shadings 
represent different phases 
during the task (white: stable; 
blue: high volatility, grey: highly 
unpredictable).
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were changing over time during the experiment. The probability sequence was designed to 
incorporate different phases during the task indicated by colour shadings: phases with high 
volatility (blue), i.e. rapid switches in probability; phases where the probability was stable over 
a prolonged period of time (white); a phase with high uncertainty, i.e. where the outcome 
is unpredictable (grey). The probability sequence was fixed across participants to ensure 
comparability of the induced learning process. The factors fractal position (which of the two 
fractals was presented left) and fractal reward probability (which fractal was associated with a 
high reward probability in the beginning of the task) were counterbalanced across participants in 
the sample. Participants were told that on each trial, one of the two fractals would be rewarded 
and were informed about the probabilistic nature of the association between the two fractals 
and the monetary reward. They were also informed about the reward probabilities of the two 
fractals being complementary and that these probabilities were subject to changes throughout 
the experiment. Importantly, a priori they had no information about the values these probabilities 
could take as well as the order and duration of different blocks with constant probabilities.

ANALYSIS

Model-agnostic analyses

The acquired behavioural data from the SPIRL task (binary responses and continuous response 
times) were subject to several descriptive analysis steps, mostly in the form of different 
visualisations of the data set. The goal of these steps was to perform a set of basic sanity checks 
and to identify particular characteristics of the data set. For the binary response data, adjusted 
correctness of the participants’ predictions (adjusted in the sense that we account for the 
probabilistic structure of our experiment as in (Iglesias et al., 2021), meaning that out of the total 
160 trials, 122 correct predictions amount to an adjusted correctness of 100% in this task) was 
calculated as part of the inclusion criteria for the analysis. The descriptive analysis of the response 
times included different visualisations of the log-transformed response time trajectories as well 
as their empirical distribution in a histogram. Furthermore, we compared log RTs by task phase 
(stable, volatile and unpredictable according to the colour shadings in Figure 1). A one-way ANOVA 
of average log RTs over subjects including the factor phase was conducted as a quantitative 
assessment of the effect of task phase on log RTs.

Computational modelling

For the model-based analysis, we follow the general steps of Bayesian workflow outlined in 
previous work (Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot et al., 
2021) and adjusted it to our specific application at hand. Our Bayesian workflow includes the 
specification of an initial model space, the choice of suitable prior configurations, the choice of 
model inversion technique and its validation, model inversion given the empirical data set, model 
comparison (hypothesis testing), and model evaluation. The general steps of Bayesian workflow 
as well as their implementation in the context of our application are visualised in Figure 2 and 
described in more detail below.

Model space
The set of models was based on hierarchical Gaussian filtering (HGF; Mathys et al., 2011, 2014), 
a Bayesian learning model comprising a hierarchy of computation inspired by predictive coding 
theories of brain function (Friston, 2005; Rao & Ballard, 1999). In simple terms, HGF assumes that 
the brain implements hierarchical Bayesian belief updating to predict the current state of the 
world. The layers of the HGF represent this hierarchy and track the probability of events (also called 
tendency) and how quickly this probability changes (called volatility). HGF is a generative modelling 
framework that implements learning, i.e. belief updating, using precision-weighted prediction 
errors at multiple levels. Crucially, this hierarchy allows for dynamic adaptation of the learning 
rate. It describes the evolution of (hidden) states and how these give rise to the sensory inputs 
(u) an agent receives. We used a 3-level enhanced HGF (eHGF) for binary inputs for the current 
application, where the states evolve as Gaussian random walks (GRW) at all but the first level and 
the step-size of the GRW at any given level depends on the next higher level (variance-coupling). 
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The probability of the binary states (stimulus categories) at the lowest level originates from a 
sigmoid transformation of the quantity at the second level. The state at the second level describes 
the tendency towards the two stimulus categories and the state at the third level captures the 
log-volatility of this tendency. The generative model of the eHGF is visualized as graphical model 
in the upper part of Figure 3 and described by the following set of equations

( ) ( )3( )( ) ( 1) ( ) ( 1)
3 3 3 3 3| , ; ,k k k kp x x N x x e ωω− −=

        

( ) ( ) ( )
( ) ( )
1 11 def( ) ( ) ( ) ( )

1 2 2 2 ( )

1
| 1 ( ) ,  ( )

1

k kx xk k k k
xp x x s x s x with s x

e

−

−= − =
+

( ) ( ) ( )
1 11( ) ( ) ( ) ( )

1| ( ) (1 )
k kx xk k k kp u x u u −= −

Further details and equations of the generative model can be found in Mathys et al. (2011).

The 3-level eHGF for binary inputs represents a concrete implementation of the meta-Bayesian 
‘observing the observer’ framework, where an observation or response model serves to specify a 
mapping from inferred beliefs of an agent to observed responses as recorded during our experiment 
(Daunizeau et al., 2010a; Daunizeau et al., 2010b). The response model uses the perceptual model 

Figure 2 Bayesian workflow 
for generative modelling in 
Computational Psychiatry. 
The general steps of Bayesian 
workflow are indicated by 
grey boxes with labels. These 
include the specification 
of a model space, prior 
specification, model inversion 
and validation of computation, 
model comparison as well 
as model evaluation. The 
flowchart represents how 
the concrete analyses steps 
of our application map onto 
the general framework of 
Bayesian workflow. Above the 
dashed line are analysis steps 
that involve the pilot data 
set as well as synthetic data 
generated using parameter 
values sampled from the 
priors. Below the dashed line 
are analysis steps including 
the main data set and 
synthetic data generated using 
parameter values sampled 
from the posteriors. Filled red 
boxes are steps of the pipeline 
that involve synthetic data. The 
green boxes highlight analysis 
steps that specifically refer to 
our research aim 1 (comparison 
of RT model families) and 
research aim 2 (assessment 
of individual RT model 
parameters).



indirectly via its inversion (Mathys et al., 2014). In this study, we augmented the perceptual model 
(eHGF) with a novel set of response models combining binary responses and continuous-valued 
response times.

In the eHGF, variational inversion of the agent’s model of the world (perceptual model) using 
Variational Bayes (VB) under a mean-field approximation and a quadratic approximation to the 
variational energies give rise to a set of analytical trial-by-trial update equations that resemble 
the general structure of Reinforcement Learning (RL) models but explicitly represent inferential 
uncertainty. For example, the update of the belief at the second level of the eHGF about the cue-
outcome contingency takes the form of

( ) ( 1) ( ) ( )
2 2 2 1
k k k kµ µ σ δ−= +

where superscripts refer to trial indices and subscripts to the level in the hierarchy of the model. In 
other words, the prediction ( ( )

2
kµ ) at trial k is equal to the sum of its value at the previous trial ( 1)

2
kµ −  

and a learning rate ( )
2
kσ  multiplied with a prediction error term ( )

1
kδ . Here the prediction error ( )

1
kδ  

describes the mismatch between the actual ( ( )ku ) and the predicted sensory input ( ( )
1ˆ kµ )

( ) ( ) ( )def
1 1ˆk k kuδ µ−=

where the predicted sensory input is simply a sigmoid transformation of the belief at the second 
level

( 1)
2

def( )
1

1

1
ˆ k

k

e µ
µ −−=

+

Notably, in the HGF, the learning rate ( )
2
kσ  is dynamic and corresponds to a function of the temporally 

evolving uncertainty of the agent’s belief about the cue-outcome contingency ( )
2
kµ . A full account 

of the update equations describing the evolution of beliefs at all levels of the 3-level eHGF for 
binary inputs can be found in the analysis plan (Appendix A3).

Figure 3 Graphical model 
representation and example 
belief trajectories. In the 
left part of the figure, a 
schematic representation 
of the generative model of 
the 3-level eHGF for binary 
inputs (perceptual model) is 
presented on top. Below, the 
response data modalities are 
visualised (response model). 
Shaded circles represent known 
quantities (inputs shaded black, 
response data shaded red). 
Unshaded circles represent 
estimated time-independent 
parameters (black circles) 
and time-varying states with 
trial indices as superscript. 
Dashed lines indicate how the 
response model depends on 
the inferential process in the 
perceptual model. Solid lines 
indicate generative processes. 
Dark turquoise lines indicate 
the probabilistic network on 
trial k. Light turquoise lines 
indicate the network at other 
points in time. On the right side 
of the figure, average belief 
trajectories of the perceptual 
model are shown in blue in the 
upper four panels. Note that 
for illustration of trajectories 
and responses, we used M1 
(for more details on M1, please 
refer to Table 1). The four 
belief trajectories represent 
the average trajectory over 
participants (Nmain = 59) of the 
states that enter the log RT 
GLM of M1. In the lower two 
panels, average response data 
over participants are shown. For 
the binary response modality, 
the red line represents average 
binary prediction ( biny ), the blue 
line represents the average 
belief about the probability of 
the outcome ( 1µ̂ ) according 
to M1. For the continuous 
response modality, the red 
line represents average 
log-transformed RTs and the 
average predicted log RTs by M1 
are shown in blue.
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We defined a set of combined response models that are all paired with a 3-level eHGF for binary 
inputs (perceptual model). The combination of binary responses and continuous response times 
in these response models is accomplished by summing the log-likelihood of two individual 
response models, assuming independence of the two response data modalities conditional on 
the parameters of the perceptual model. All seven models in our model space are listed in Table 1.

As binary part of the response model, we used a unit-square sigmoid function mapping from the 
belief ( )

1ˆ kµ  at the lowest level of the eHGF that the next outcome will be 1 onto the probabilities 
( )( 1)k
binp y =  and ( )( 0)k

binp y =  that the agent will choose response 1 or 0 (for simplicity, in the following 
equation we use def( ) ( )

1ˆk km µ=  and we omit time indices on y and m):

( )
1

(1 )
| ,

(1 ) (1 )

y y

bin

m m
p y m

m m m m

ζ ζ

ζ ζ ζ ζζ
−

   −
=    + − + −   

Here, the parameter ζ determines the steepness of the sigmoid function and is referred to as 
inverse decision temperature or inverse decision noise. For reasons of comparability, the binary 
part was kept constant across all response models in our model space.

For the continuous part of the response models, we used seven different variants of a general 
linear model (GLM) to predict the log-transformed RTs on a trial-by-trial basis. The regressors of 
models 1–4 (M1–M4) are belief trajectories from the perceptual model (eHGF), e.g., an individual’s 
estimated uncertainty about the outcome ( ( )

1ˆ kσ ) at trial k. This was inspired by the approaches used 
in previous work where reaction time data had been modelled using the HGF framework (Lawson 
et al., 2017, 2021; Marshall et al., 2016). A set of alternative combined response models (M5–M7) 
predicted RTs independently of the perceptual model (eHGF); including these models allowed us 
to test whether informing RTs by inferred states from the eHGF would improve the models at all.

Our model space can thus be divided into 2 families based on the continuous part of the response 
models (since the perceptual model and the binary part of the response models were held 
constant). M1–M4 are ‘informed’ RT models and M5–M7 are ‘uninformed’ RT models. Note that 
Bayesian model comparison is based on the (log) evidence and therefore requires the data to be 
the same across all models. In our case, it is thus not possible to include a model that does not 
model RT at all in the model comparison.

Table 1 Model Space. All seven 
models in our model space 
are composed of a perceptual 
(Prc) model and an observation 
(Obs) or response model. The 
perceptual model as well as 
the binary part of the response 
model is held constant across 
all seven models. The equations 
of the log RT GLMs (continuous 
part of the response model) 
of M1–M4 (family of informed 
RT models) contain belief 
trajectories of the perceptual 
model as regressors. The 
update equations for the 
perceptual model (eHGF) are 
listed in the analysis plan. 
M5–M7 (uninformed RT family) 
predict log RTs independent of 
the perceptual model.

MODEL PRC MODEL OBS MODEL (CONTINUOUS) OBS MODEL (BINARY)

M1 eHGF ( ) ( )( )
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ˆ
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k
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S
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− −
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− −

− == 
− − =

Unit-square sigmoid

M2 eHGF ( ) ( )( ) ( ) ( )
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The GLM equations of M1–M7 are listed in Table 1, and a graphical representation of M1 is 
presented in Figure 3. Concerning the first (informed) set of models, the GLM of M1 was adapted 
from a model used by Lawson et al. (2017) and tailored towards the specific properties of the 
SPIRL task. Models M2–M4 are custom built response models with the following underlying 
motivation: Firstly, the goal was to reduce the number of regressors entering the GLM and hence 
the complexity of the models compared to M1. Secondly, the idea was to include different types 
of uncertainty from different levels of the hierarchy described by the perceptual model (eHGF). 
The eHGF accommodates various forms of uncertainty. Two sources of uncertainty, informational 
and environmental uncertainty, respectively, are represented in the update equations of the eHGF. 
M2 includes estimates of informational uncertainty ( ( )

2
kσ ) and phasic volatility ( ( )

3ˆ kµ ). M3 includes 
estimates of informational uncertainty at the outcome level ( ( )

1ˆ kσ ) and at the second level ( ( )
2
kσ ) as 

well as environmental (
( 1)

2 23( )k

e κ µ ω− + ) uncertainty whereas M4 only includes estimates about the two 
latter quantities. For a more detailed discussion of the different forms of uncertainty captured by 
the eHGF, please see Mathys et al. (2014).

By contrast, the second (uninformed) set of models, M5–M7, have response time GLMs where 
the regressors are independent of the perceptual model. M5 is a null model, representing the 
assumption that log RTs are simply noise around a constant intercept. M6 allows for a linear decay 
over time in the response times, and M7 corresponds to a null model with two different intercepts 
for correct and incorrect response trials (referring to the binary response data).

Prior specification
Prior elicitation. Since the central questions of the present study are addressed by Bayesian model 
comparison (whose central quantity, the model evidence, takes into account the models’ priors), 
the specification of priors is a critical step. We aimed to specify priors that lay in the range of 
actual human behaviour for the present task, while at the same time minimising the subjectivity 
involved in the choice of priors. In order to avoid problems of double-dipping, we made use of 
an independent data set, i.e. the 20 participants from our pilot study, for the elicitation of prior 
densities. Recently, similar approaches have been used for comparable modelling endeavours 
(Harrison et al., 2021; Schöbi et al., 2021). We used a two-step procedure for elicitation of prior 
densities that were subsequently used in the analysis of the main data set (for the results, see 
Supplementary Material S2). We estimated the sufficient statistics (mean and variance) of the 
prior densities as follows (all priors take the form of a normal distribution):

1. Inversion of M1–M7 given the pilot data set (Npilot = 20) using initial prior means and 
variances. These initial prior means and variances represent the default prior configurations 
of the eHGF in the HGF Toolbox.

2. For every model m, we defined:

a. a new prior mean pEm as the robust mean estimate over Maximum a posteriori (MAP) 
estimates obtained in step 1.

b. a new prior variance pCm as the robust variance estimate over MAP estimates obtained 
in step 1.

Due to the limited size of the pilot data set, robust mean and variance estimates were computed. 
We used a variant of the minimum covariance determinant (MCD) method, namely the FAST-MCD 
algorithm developed by (Rousseeuw & Van Driessen, 1999), as implemented in the ‘robustcov’ 
function in MATLAB R2019b. We refer to this new set of priors, that we estimated via the above 
described procedure, as empirical priors (as informed by the pilot data set). Please note that our 
procedure is distinct from commonly employed ‘empirical Bayesian’ procedures that estimate 
priors and parameter values from the same data set, using a hierarchical model. The advantage of 
our procedure is that the data which inform the choice of priors is fully independent from the data 
that inform parameter estimation.

Prior predictive checking. In order to get an intuition for the range of behaviours which can be 
generated by our models under the initial and empirical priors, we looked at their prior predictive 
distributions. More specifically, we randomly sampled 100 parameter values from the respective 
prior densities and simulated belief trajectories and responses. Adequacy of our chosen prior 
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distributions was determined in a qualitative manner (visualisations) as well as in a quantitative 
fashion in the form of different recovery analyses (see paragraph ‘Validation of model inversion’). 
More detailed information describing our choice of priors and prior predictive checking can be 
found in the analysis plan.

Model inversion
We inverted the generative models using approximate Bayesian inference as implemented in 
the HGF Toolbox. MAP estimates are computed as the minimum of the negative log joint using 
gradient-based optimisation techniques. By default, the HGF Toolbox uses an optimisation 
algorithm from the quasi-Newton methods family (Broyden-Fletcher-Goldfarb-Shanno algorithm; 
BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The covariance of the 
posterior was obtained under a Laplace approximation to the negative log joint at the MAP. This 
allowed for the specification of credible intervals on the obtained parameter estimates as well as 
the calculation of an approximate log model evidence (LME) as a measure of ‘model goodness’. 
For the present analyses, a multi-start optimisation approach was used to alleviate issues with 
the optimisation algorithm getting stuck in local extrema of the objective function. Specifically, 
400 different starting points were used for the inversion of each subject and model. Of these 400 
starting points, one always corresponded to the prior mean values of the different parameters 
(representing the default setting in the HGF Toolbox), whereas the other 399 starting points were 
randomly sampled values from the respective prior density of the parameters.

It should be noted that this choice of inference technique means that we are dealing with a 
simplified case of BDA. That is, we only obtain a point estimate of the posterior and approximate 
the posterior uncertainty. An advantage of our model inversion procedure is the computational 
efficiency and the avoidance of concerns about convergence, as in the case of Markov Chain Monte 
Carlo (MCMC) procedures. Having said this, for the specific purpose of our paper, the choice of 
model inversion approach is not critical.

Validation of model inversion
To examine the identifiability of parameters from the models in our model space, we performed 
a set of recovery analyses using synthetic data (for a tutorial introduction to recovery analyses, 
albeit in the context of maximum likelihood estimation, see Wilson and Collins (2019)). Examining 
the identifiability (or recoverability) of parameters and models can also be seen as a test of face 
validity, i.e. asking whether the models actually do what they are supposed to do: allowing for 
veridical parameter estimates and representing a distinct explanation of observed data that can 
be distinguished from other explanations. This step is an important part of Bayesian workflow 
because it establishes a boundary between the type of questions that can be addressed using the 
model space at hand, and those questions for which a meaningful answer cannot be expected. 
In other words, we assessed whether in principle (i.e., knowing the ‘true’ data-generating models 
and parameter values), we would be able to identify the data-generating model as the model that 
explained the data best (model identifiability) and the parameter values of the data generating 
model (parameter recovery), respectively. In a second step, we assessed whether data-generating 
model families could be recovered using family-level comparisons.

For each model, we generated a synthetic data set (Nsim = 100) by randomly drawing 100 samples 
from the empirical prior densities and plugging these values into the likelihood function. We 
then fit the synthetic data sets by each of the models in our model space under the respective 
empirical priors. Parameter recovery was assessed by visually comparing simulated parameter 
values to MAP estimates obtained using the data-generating model and by calculating Pearson 
correlation coefficients r. Model identifiability was quantified both as the proportion of correctly 
identified models according to approximate LME scores in a classification analysis, and calculating 
protected exceedance probabilities (PXP) as part of random-effects (RFX) Bayesian model selection 
(BMS) (Rigoux et al., 2014; Stephan et al., 2009). Moreover, we computed a balanced accuracy 
score for the LME winner classification and compared it to the upper bound of a 90%-CI when 
assuming each model to be selected with equal probability. Family level recovery was quantified 
using approximate LME scores obtained during the model identifiability analysis to create 5’000 
synthetic data sets of Nfamsim = 60 subjects each, with different ratios of data generating families. 



86Hess et al.  
Computational Psychiatry  
DOI: 10.5334/cpsy.116

We compared true family frequencies with expected posterior family frequency (Ef) and family 
exceedance probabilities (XP) resulting from family-level RFX BMS (Penny et al., 2010). More details 
on the background of BMS methods can be found in the next section (‘Model comparison’) and in 
the referenced literature.

Model comparison
After careful investigation of our model space and validation of the chosen inference algorithm, 
we inverted the models given the main data set in order to address the following aims:

Aim 1. Perform a quantitative comparison of response models that utilise binary and continuous-
valued response data in different ways. More specifically, we tested whether the family of informed 
RT models explained the collected data better than the uninformed RT model family, or vice-
versa. To this and, we performed family-level RFX BMS as implemented in the VBA Toolbox. Family-
level inference serves to reduce uncertainty about aspects of model structure other than the 
characteristic of interest (Penny et al., 2010). In the present study, we had no specific hypothesis 
about which of our candidate models explained the data best. Instead, we aimed to show that 
informing our response time models using quantities from the perceptual model (informed RT 
family) resulted in a better explanation of the data than using different variants of response time 
models that explain response times independent of the perceptual model (uninformed RT family). 
RFX BMS represents a hierarchical approach to model selection, treating the model as a random 
variable among subjects, allowing for inference on posterior family and model probabilities. RFX 
BMS accounts for group heterogeneity (different participants may be using different winning 
models/families) and provides robustness against outliers as opposed to fixed-effects (FFX) 
procedures (Stephan et al., 2009).

For the family-level RFX BMS, we specified a uniform prior at the family level to avoid biasing our 
inference (Penny et al., 2010). We computed the posterior family probabilities which correspond to 
the posterior belief that family k generated the data. Additionally, we computed family XPs which 
correspond to the belief that family k is more likely than any other of the K families, given the data 
from all participants.

Aim 2. A quantitative assessment of whether and how parameters characterising subject-specific 
learning behaviour were associated with an individual’s measured response times. To this end, we 
first needed to identify a single winning model – i.e. the model that best describes the measured 
data – by conducting a second RFX BMS analysis on the entire model space, this time at the level 
of individual models.

Once this model had been identified and in case it belonged to the family of informed RT models, 
we analysed the influence of the individual regressors of its response time GLM in a second step by 
examining the posterior parameter estimates of the winning model. To quantify the importance 
of each free parameter, we tested its significance against the initial prior mean (i.e. 0) using one-
sample t-tests at a significance threshold of p < 0.05, Bonferroni-corrected for the number of 
performed tests (i.e. free parameters).

Model evaluation
After we had fit our models to empirical data and performed a set of statistical tests to answer 
our research questions, it still remained to be evaluated whether our model(s) actually provided 
a good explanation of the data, i.e. an assessment of model quality in absolute terms, using 
posterior predictive checks (van de Schoot et al., 2021). This approach is distinct from the purpose 
of (Bayesian) model comparison which assesses the quality of candidate models in relative terms.

Specifically, we performed qualitative posterior predictive checks (van de Schoot et al., 2021) by 
simulating new data conditional on the obtained subject-specific posteriors. For this, we used 
the Hessian of the negative log joint at the MAP estimate obtained during the optimisation to 
determine the posterior covariance matrix. This allowed us to construct an approximate multi-
dimensional posterior for each model and participant. We then sampled parameter values 
(Nppc = 100) from the calculated approximate posterior densities of each participant and model and 
used the sampled parameter values to generate synthetic response data (binary and continuous). 
Subsequently, the generated data were compared to the empirical data at an individual subject 
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level. In order to determine the quality of the posterior predictions of our model, we pre-specified 
the following criteria in our analysis plan which we deemed critical characteristics of the collected 
data set: Calculated adjusted correctness of binary responses, and the plausibility of predicted log 
RT trajectories assessed in a qualitative fashion.

RESULTS
MODEL-AGNOSTIC RESULTS

Here, we report descriptive statistics of behavioural data from Nmain = 59 participants in our main 
sample. In Figure 3, mean and standard deviation of trial-wise binary responses and log RTs 
across participants are visualised in red. Figure 4A displays a trial-wise summary of percentage 
of incorrect responses over all participants. A histogram of log-transformed RTs is presented in 
Figure 4B. Behavioural data of individual participants can be found in the Supplementary Material 
(S1). A one-way ANOVA of log-transformed RTs did not reveal a significant main effect of factor 
phase (p = 0.15).

COMPUTATIONAL MODELLING

Prior specification

A detailed treatment of the initial priors including their sufficient statistics, prior predictive 
distributions, and a grid search for different parameter values of the eHGF is presented in the 
analysis plan (Table 1, Figures 3 and A1). Here, we focus on the empirical priors which are used for 
the analysis of the main data set.

In Figure 5A empirical prior densities for all free parameters of M1 are shown alongside the MAP 
estimates from model inversion on the pilot data set (Npilot = 20) as well as the initial prior densities. 
(Note that these reported empirical priors differ slightly from the specifications in the analysis plan, 
which is due to the fact that we are using a later version of TAPAS to run the analysis. However, 
qualitatively the empirical priors do not differ between the two versions.) It can be seen that the 
informativeness of the priors increased from the initial to the empirical priors. This is shown more 
comprehensively for all seven models in the Supplementary Material (S2), where we visualise both 
prior densities as well as prior predictive distributions of initial and empirical priors. Again, it is 

Figure 4 Binary responses and 
continuous log-transformed 
response times. In A, the red 
line represents a trial-wise 
summary of percentage of 
incorrect responses (inverted 
for true probabilities 0.2 
indicated by the black line) over 
all participants (Nmain = 59) and 
the average absolute prediction 
error about the trial outcome 
( 1δ ) of M1 in red. Black dots 
represent the reward of fractal 
A on each trial (1 = reward, 
0 = no reward) and the black 
line shows the underlying 
probability structure of the 
task. B shows the histogram 
of log-transformed RTs over 
all participants in ms. The 
histogram of residuals of log RT 
model fits obtained by M1 are 
visualised in C.
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worth emphasising that we avoided problems of circularity (i.e. informing the prior by the same 
data set in whose analysis the prior is applied) by using an independent data set to estimate the 
sufficient statistics of the empirical priors.

Prior predictive checks using the empirical priors are visualized in Figure 5B and 5C. Figure 5B shows 
the distribution of predicted belief trajectories 1µ̂  at the outcome level of the eHGF as well as the 
trial-wise frequency of simulated binary responses of M1 (Nsim = 100). Since we assume relatively 
little decision noise under the empirical priors, the frequency of binary responses is higher than the 
average predicted belief for trials where 1ˆ 0.5µ >  and vice-versa for trials where 1ˆ 0.5µ < . Figure 5C 
displays simulated log RT trajectories for M1 under the empirical priors. Visualisations of the initial 
as well as the empirical prior densities, the respective prior predictive distributions at all three levels 
of the perceptual model as well as simulated log RT data for all seven models in our model space 
are included in the Supplementary Material (S2).

Figure 5 Prior configurations 
of M1. A shows the empirical 
prior densities for each free 
parameter of M1 (solid line) as 
estimated using MAP estimates 
(black dots) obtained from a 
separate pilot data set (Npilot 

= 20) using the initial priors 
(dashed lines). A detailed 
description of M1 can be found 
in Table 1 and in the main text. 
Prior predictive distributions 
under the empirical priors of M1 
are displayed for both response 
data modalities. In B on the 
left, belief trajectories about 
the outcome (

1µ̂) at the lowest 
level of the eHGF are displayed 
in blue with the thick blue line 
representing the resulting belief 
trajectory using the empirical 
prior mean parameter values 
and the yellow line representing 
the average simulated binary 
response (Nsim = 100). The green 
vertical lines indicate trials 
with minimum (dark green), 
median (green), and maximum 
(light green) variance across 
the simulated trajectories 
as illustrated on the right. In 
B on the right, histograms 
of simulated 1µ̂  values are 
presented in green for trials 
with maximum, median and 
minimum 1µ̂  variance (from 
light to dark) across simulated 
trajectories. See the traces on 
the left for an indication where 
these trials are located within 
the trajectory. In C on the 
left, simulated log RT data are 
shown in blue, the dashed black 
lines are the boundaries given 
by the length of the response 
window in each trial. The thick 
blue line represents the average 
simulated log RT trajectory 
(Nsim = 100). In C on the right, 
histograms of simulated log 
RT values are presented in 
green for trials with maximum, 
median and minimum log RT 
variance (from light to dark) 
across simulated trajectories.
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Across models, our prior predictive checks using the empirical priors showed that – as expected by 
the construction of the model space – all our models produce similar behaviour at the level of the 
perceptual model and how they predict binary response data. By contrast, they differ considerably 
in the way they predict log RT data (see Supplementary Material Figures S2b8–S2b9). Moreover, 
all of them allow for a wide range of behaviour indicating that the elicited empirical prior densities 
are flexible enough to account for inter-individual differences between participants. This serves as 
qualitative sanity check of our prior elicitation procedure.

Validation of computation

Results from the family-level recovery analysis (Figure 6A) show good recoverability of true family 
frequencies for the 5’000 synthetic data sets (Nfamsim = 60 simulated subjects per data set). Reassuringly, 
both Ef as well as XP values show little to no bias towards either of the two model families.

Figure 6B shows the 7 × 7 confusion matrices resulting from Individual-level model recovery 
analysis. All models could be identified well above chance level both when evaluating approximate 
LME winner frequencies as well as PXP values resulting from RFX BMS on the synthetic data set 
(Nsim = 100). For the LME winner classification analysis, the balanced accuracy score is 0.66 which 
is clearly above 0.19 (the upper bound of the 90%-CI when assuming chance across all 7 models).

Figure 6 Validation of 
Computation. A shows results 
from family-level recovery 
analysis comparing Ef (left) 
and XP (right) values with true 
family frequencies. B depicts 
results from individual model 
level recovery analysis. 7 × 7 
confusion matrices for LME 
winner frequencies (left) 
and PXP scores (right) are 
shown with data generating 
models on the y-axis and 
recovered models on the 
x-axis. C visualizes simulated 
vs. estimated values of all free 
parameters of M1 (parameter 
recovery). Correlation 
between simulated and 
estimated parameter values 
is indicated using Pearson 
correlation coefficients r. In 
D, recoverability of the ω3 
parameter of the 3-level eHGF 
for binary inputs is visualised 
for all seven models in the 
model space including Pearson 
correlation coefficients r. 
Models from the informed 
RT family (M1–M4) show 
consistently better ω3 recovery 
compared to models of the 
uninformed RT family (M5–M7).
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Parameter recovery analysis of M1 is visualised in Figure 6C. All of the nine free parameters of M1 
(two perceptual and seven response model parameters) show good recoverability. All Pearson 
correlations between true and recovered parameter values are highly significant (p < 0.001). 
Recoverability of the meta-volatility parameter (ω3) of the 3-level eHGF for binary inputs is the least 
robust among all free parameters of M1 (r = 0.67). Detailed results from parameter recovery analysis 
of all models are listed in the Supplementary Material (S3). Most of the model parameters are well 
recoverable in all of the seven models. Notably, in all models, the meta-volatility parameter (ω3) of 
the perceptual model is more challenging to recover than other parameters. However, Figure 6D 
shows that this depends on whether information about RTs is considered by the response model or 
not: models of the informed RT family (M1–M4) show much better ω3 recoverability (with correlation 
coefficients in the range of 0.67–0.81) compared to models of the uninformed RT family (M5–M7), 
where correlation coefficients are in the range of 0.3–0.54. This shows a clear benefit in terms of 
practical identifiability brought by the use of response models that combine different data modalities 
in a way that incorporates states from the perceptual model in both parts of the response model.

Model comparison

Aim 1. Figure 7A shows the results of the family level RFX BMS on the main data set. The family 
of informed RT models is identified as the winning family (XP = 1, Ef = 0.79). In other words, we 
find clear evidence supporting the hypothesis that the family of informed RT models explains 
the collected data better (trading off accuracy and complexity) compared to models from the 
uninformed RT family. This demonstrates the practical utility of the family of informed RT models.

Aim 2. Figure 7B visualizes the results of the individual model level RFX BMS on the main data set. 
Here, M1 is identified as the winning model (PXP = 1, Ef = 0.65), which consists of a 3-level eHGF 
for binary inputs combined with the unit-square sigmoid model as binary part and the Lawson-
inspired log RT GLM as continuous part of the response model. Figure 7C displays MAP estimates of 
the M1 log RT GLM regressors. Post-hoc one-sample t-tests on posterior means of the log RT GLM 
parameters of M1 reveal a highly significant (p < 0.001) difference between initial prior mean (i.e. 
0) and posterior mean values of the parameter β2, which scales the influence of the informational 
uncertainty at the level of the outcome (Bernoulli variance ( )

1ˆ kσ ) from the perceptual model on 
the log RTs. None of the other GLM regressors shows a significant difference between prior and 
posterior mean values (Bonferroni-corrected).

Model evaluation

Figure 3 shows that the average binary predictions as well as the average predicted log RTs by M1 over 
all participants of the main data set capture the empirical data quite well. In Figure 4A, the trial-wise 
percentage of participants giving an incorrect response (inverted for true reward probabilities of 0.2 to 
improve visual comparability) is compared to the averaged absolute prediction error at the outcome 

Figure 7 Hypothesis testing. 
A shows the results of the 
family level RFX BMS (Efs on 
the left, XPs on the right) with 
the informed RT family clearly 
outperforming the uninformed 
RT model family. B displays Efs 
(left) and PXPs (right) resulting 
from individual model level 
RFX BMS. M1 can be identified 
as the clear winning model. C 
shows raincloud plots of the 
MAP estimates of the M1 GLM 
regressors (generated using 
the RainCloudPlots library). Fine 
black vertical lines indicate the 
initial prior mean values (i.e. 
0) and a black star indicates 
significantly different prior and 
posterior means of β2 which 
scales the influence of ( )

1ˆ kσ  on 
log RTs (one-sample t-test, 
p < 0.001).
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level ( 1δ ) of M1. This qualitative comparison serves as an example of how the low-level prediction error 
computed using the 3-level eHGF for binary inputs resembles participants’ performance during the 
SPIRL task. Figure 4C displays the residuals of log RT model fits obtained by M1 which are approximately 
normally distributed. This is in accordance with the assumption of Gaussian noise in the log RT GLMs.

Examples of the best, average and worst fits of M1 to single-participant data in terms of the 
log likelihood are shown in the Supplementary Material (S1). Overall, belief trajectories at the 
outcome level of the eHGF seem to align well with the participants’ binary predictions. Regarding 
the RT fits, one can clearly see that individual log-transformed RT data is very noisy. However, a 
look at the averaged log RT data across participants and the averaged log RT model fits clearly 
shows that M1 is able to pick up the overarching structure in the log RT trajectories (Figure 3). 
Importantly, models from the informed RT family (M1–M4) and to some degree also M7 show 
a close correspondence between the average of the predicted and the average of the actual RT 
trajectories (see Supplementary Material S4).

Results from posterior predictive checks of M1 are shown in Figure 8 and in the Supplementary 
Material (S5). These allow for a qualitative assessment of the obtained single-subject posteriors. 

Figure 8 Posterior predictive 
checks for M1. Data from three 
participants of the main data 
set are shown. Participants 
were chosen according to 
goodness of model fit of 
M1, i.e. participant 21 with 
a high log likelihood value, 
participant 29 showing average 
goodness of fit and participant 
5 showing the worst fit. A 
displays adjusted correctness 
of binary responses for these 
participants in red. Blue circles 
are the simulated adjusted 
correctness values resulting 
from sampled parameter 
values of the subject-specific 
posteriors of M1. The blue 
probability densities are the 
estimated posterior predictive 
densities based on the samples 
drawn from the posteriors 
(Nppc = 100) using kernel density 
estimation as implemented 
in the RainCloudPlots library. 
In B, we show empirical log 
RT trajectories of the three 
participants in red. Fine blue 
lines are simulated log RT 
trajectories resulting from 
sampled parameter values of 
the subject-specific posteriors 
and the thick blue line 
represents the predicted log RT 
when using the MAP estimates 
of M1 for each participant 
to generate synthetic RT 
data. The green vertical lines 
indicate trials with minimum 
(dark green), median (green), 
and maximum (light green) 
variance across the simulated 
trajectories as illustrated on the 
right. The histograms on the 
right visualise the distribution of 
synthetic log RT data generated 
by simulating from the subject-
specific posteriors for trials 
with maximum, median, and 
minimum variance (from 
light to dark green) across all 
simulated trajectories. See 
the traces on the left for an 
indication where these trials are 
located within the trajectory.
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Regarding the binary response data, we can clearly see that the adjusted correctness of empirical 
response data is within the ranges of values covered by the individual subjects’ posterior predictive 
densities for most of the participants (Figure 8A and Supplementary Figure S5A). Concerning the 
response time data, we can observe that predicted signal using posterior mean parameter values 
captures higher level fluctuations in individual empirical log-transformed RT trajectories (Figure 8B 
and Supplementary Figure S5B). Similar to our observations regarding the individual-level RT model 
fits, sampled log RT trajectories are very noisy. However, the range of simulated log RT trajectories 
from the obtained posteriors aligns well with the individual empirical log RT trajectories. Moreover, 
the histograms of simulated log RT data from single-subject posteriors show a higher dispersion 
for participants with worse model fits as measured by the log likelihood (Figure 8B).

DISCUSSION
The present study provides a first application of response models combining two different data 
modalities in the framework of the HGF. More specifically, we developed a novel set of response 
models simultaneously fitting binary responses and continuous response time data during 
inference. Additionally, we developed and implemented an associative learning task, the SPIRL 
task, in which fast responses were incentivised, allowing us to model reaction times and binary 
responses jointly. We performed extensive simulation analyses and applied our set of combined 
response models to behavioural data from the SPIRL task. Our computational approach highlighted 
the utility of Bayesian workflow, increasing transparency and interpretability of reported results. 
We demonstrated the advantage of combining different response data modalities in a single 
model for the robustness of inference. Finally, the analysis of the data from the SPIRL task resulted 
in a clearly superior model, providing the best explanation of the data. Inspection of individual 
parameter estimates of this model revealed a significant linear relationship between log RT data 
and informational uncertainty at the level of the outcome ( ( )

1ˆ kσ ).

COMBINING DIFFERENT RESPONSE DATA MODALITIES FOR ROBUST INFERENCE 
IN THE HGF

The first motivation for this paper was the development and application of a set of response 
models that combined multiple data modalities. In this way, we hoped to address issues related to 
parameter recovery and model identifiability in the context of the HGF, especially when dealing with 
applications to binary response data (Harrison et al., 2021; Iglesias et al., 2021). We hypothesised 
that the combination of different data modalities should increase identifiability, both at the level 
of parameters and models. Recoverability of parameters should benefit further from incorporation 
of perceptual model quantities in the response models. Indeed, our simulations demonstrated 
good to excellent recoverability at all different levels (model parameters, individual models, and 
model families). We also showed that recoverability of perceptual model parameters was superior 
in the family of informed RT models, which use quantities from the perceptual model as part of the 
log RT GLM, as opposed to the family of uninformed RT models.

Comparing the performance of the two model families against empirical data and using family 
level RFX BMS, we demonstrated that the data from the SPIRL task were better explained by the 
family of informed RT compared to the family of uninformed RT models. Moreover, RFX BMS on the 
individual model level revealed M1 as the clearly winning model, providing the best explanation 
for the empirical data set. Notably, it is not possible to directly compare multimodal response 
models to binary response models when using standard model recovery approaches based on 
approximations to the model evidence (marginal likelihood), because the model evidence explicitly 
depends on the data. However, one can compare the present findings to previous results in literature 
(e.g. see Supplementary Figure 2 of Harrison et al., 2021) which showed that model and parameter 
identifiability can be problematic when applying (three-level) HGF models to binary response data 
from associative learning tasks. In this sense, our current results – which demonstrate excellent 
model identifiability (see Figure 6B) – represent a considerable improvement over previous results 
based on binary response models.
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Our analysis of the regression weights of the log RT GLM of M1 revealed a significant influence of 
the parameter β2 which scales the contribution of the outcome uncertainty ( )

1ˆ kσ  in the eHGF. Here, 
we refer to outcome uncertainty as the informational uncertainty at the level of the outcome, 
which describes the irreducible uncertainty associated with any type of probabilistic prediction. 
This result is consistent with the findings of Lawson et al. (2017) who applied a very similar 
combination of an HGF perceptual model and a GLM as response model, mapping states of the 
perceptual model to log RT data in an associative learning task. In addition, other work that did 
not use the HGF framework also found evidence for a relationship between reaction times and the 
uncertainty of responses (Bonnet & Ars, 2008).

Harnessing the information of an additional data modality during statistical inference is not 
a novel idea. First examples of similar approaches exist in the context of sequential sampling 
models such as drift-diffusion models (DDMs) (Kraemer et al., 2021; Pedersen et al., 2017; Shahar 
et al., 2019) which have been combined with RL models (Ballard & McClure, 2019; Clithero, 2018; 
Loeys et al., 2011; McDougle & Collins, 2021; Miletić et al., 2021). However, in the literature, 
models combining binary choices and continuous response times are far less common than 
simple binary observation models. Moreover, our study focuses on a specific generative modelling 
framework, the HGF, for which the present study, to the best of our knowledge, represents the first 
application of a response model combining different response data modalities to empirical data 
in combination with the HGF.

The SPIRL task was designed to incentivise both correct as well as fast responses. There is a rich 
body of literature on the speed-accuracy trade-off (Heitz, 2014). The fact that outcomes were 
always presented after a fixed duration (1.7s) and independently of response times represents 
a potential limitation of our current task since previous work has shown stronger effects on RTs 
for response time dependent outcome delivery (Hein et al., 2021; Tecilla et al., 2023). In future 
research, it may be possible to boost effects on RTs by including response time dependent outcome 
delivery in our task protocol.

There are some limitations to our modelling approach. First of all, for the specification of our 
model space we assumed independence between the two response data modalities (binary 
responses and response times) conditional on the parameters of the perceptual model. For future 
applications, one may consider finessing the current formulation. Second, MAP inference is a 
rather simplistic technique for Bayesian inference where the posterior uncertainty needs to be 
approximated post-hoc. Alternatives would be VB or MCMC methods which directly include an 
estimate of the posterior uncertainty. Moreover, the chosen inference method is based on a variant 
of gradient descent, which might not be optimal for dealing with multimodal posteriors. We tried 
to combat this shortcoming by adopting a multistart approach to prevent the optimisation from 
getting stuck at local extrema. The results from parameter recovery analysis suggested that the 
chosen inference scheme is appropriate for the application at hand.

The presented combined response models for the HGF framework have potential for applications 
in a variety of tasks and domains. In principle, our modelling approach can be applied to any two 
different data modalities of interest, e.g. behavioural, physiological, neurophysiological data, etc. 
However, it is important that the data modalities of interest contain relevant information that 
can be picked up by the model. This can be assessed e.g. by comparing different models with a 
null model in a candidate application, similar to the comparison of different model families in 
this study. Note that this can become increasingly difficult when tasks get more complex and a 
mechanistic link between quantities of the perceptual model and response data becomes harder 
to establish. One potential remedy could be to build ‘theory-agnostic’ response models that 
include many or even all hidden states of the perceptual model. Alternatively, the assumption 
about the specific functional form (e.g. linear) of the relation between hidden states and responses 
could be relaxed by a Taylor expansion (den Ouden et al., 2009).

We hope that the use of combined response models can be particularly useful in TN/CP. Typical 
constraints for the design of clinically applicable paradigms include limited number of trials and 
complexity constraints for tasks, which limit the number of data points and ultimately constrain 
inference. Added information from a second data modality may compensate for these limitations 
and thus help improve the robustness of results.
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BAYESIAN WORKFLOW FOR GENERATIVE MODELLING IN TN/CP

The second motivation for this paper was to highlight the key ingredients of Bayesian workflow and 
illustrate its application. In TN/CP, generative models not only represent central tools for inference 
on disease-relevant cognitive and neurophysiological mechanisms (Stephan & Mathys, 2014) but 
also frequently serve to provide low-dimensional and mechanistically interpretable features for 
machine learning (generative embedding; Stephan et al., 2017). The robustness of results from 
generative modelling is therefore of major importance in TN/CP and can benefit from incorporating 
general (field-unspecific) methodological and conceptual developments concerning BDA.

In BDA, the choice of priors plays an important role for identifiability, reliability and predictive 
validity of model-fitting results (Gershman, 2016). Yet, the importance of priors is easily overlooked 
and little attention is usually devoted to systematic description and analysis thereof. Similarly, 
validation of the chosen inference technique (including the effects of approximations and the 
choice of optimisation algorithms) as well as model evaluation are often neglected. This is 
especially critical in TN/CP, since the potential success of computational modelling endeavours 
for clinical applications is inextricably tied to the robustness of inference. Hence, transparency 
with regard to the hyperparameters of an analysis pipeline is important and requires a detailed 
description of individual analysis steps.

Importantly, we did not invent the Bayesian workflow presented here; instead, it was derived 
from previous proposals (e.g. Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de 
Schoot et al., 2021) and augmented by additional components, e.g. Bayesian model selection at 
the family level (Penny et al., 2010). These steps are summarised visually in Figure 2 and include 
the specification of an initial model space, prior elicitation and prior predictive checking, the choice 
of a Bayesian inference algorithm and concurrent validation of computation, model comparison 
procedures, and model evaluation.

Using the well-known Bayesian workflow by Gelman and colleagues (2020) for comparison, 
our approach introduces several extensions. First, our procedure for elicitation of prior 
distributions involves an independent data set, allowing us to obtain a set of data-informed 
priors representative of actual human behaviour while at the same time avoiding problems of 
double-dipping. Second, the analysis was pre-specified in its entirety, (the only change concerned 
using a more current version of TAPAS, a deviation which we explicitly mention above). This pre-
specification is somewhat in contradiction to the iterative procedure proposed by Gelman and 
colleagues, but we consider this a strength of our approach. Given the many degrees of freedom 
and the numerous cognitive biases that scientists may inadvertently be affected by, pre-
registration is an important and effective protection for researchers against fooling themselves 
(Nosek et al., 2018). Our point is not that iterative model building should not be part of Bayesian 
workflow; however, we believe that it is important to combine it with ‘guard railings’ (such as a 
preregistered analysis plan). Additionally, whenever possible, independent data sets should be 
used, both for specifying priors and for evaluating the generalisability of the obtained results. We 
appreciate that this may not always be possible, for example, in situations where data sets result 
from rare, or even unique, events.

We are aware that the proposed Bayesian workflow is not perfectly generalizable to every 
application of generative models in TN/CP. It should rather be seen as a blueprint that can be 
adapted and extended to specific cases of generative modelling. In this work, we specified 
our model space in a hypothesis-driven fashion and we used an independent data set for the 
elicitation of prior distributions. However, there are scenarios where obtaining a representative 
pilot data set may be challenging (e.g. studies with multiple pharmacological manipulations) 
or infeasible due to resource constraints. Many alternative approaches to model building (step 
one of Bayesian workflow) exist that may be more appropriate in other contexts, depending 
on the type of application. For example, in the absence of a precise hypothesis about specific 
model parameters, preliminary sensitivity analyses could be used to identify how variation in 
parameter values influences model behaviour, which in turn informs model specification and 
the choice of priors.
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Furthermore, there are important elements of Bayesian workflow which we did not implement 
and discuss here in detail. For example, there are principled (but computationally expensive) 
approaches to validating Bayesian inference algorithms such as simulation-based calibration (SBC) 
(Talts et al., 2018). Also, when using sampling-based approximations to the posterior, additional 
diagnostics (e.g. concerning convergence) are required. Previous papers on BDA provide detailed 
discussions of these (and other) topics (Betancourt, 2020; Gelman et al., 2013, 2020; Schad et al., 
2020; van de Schoot et al., 2021).

In summary, this paper provided an illustrative application of Bayesian workflow in the context of 
an associative learning task that allowed for simultaneously modelling two behavioural readouts. 
We hope that this example will help pave the way towards standard adoption of Bayesian 
workflow and contributes to efforts of improving the transparency and robustness of results in 
TN/CP.

ABBREVIATIONS
BDA Bayesian data analysis

BFGS Broyden-Fletcher-Goldfarb-Shanno

BMS Bayesian Model Selection

CI Confidence Interval

CP Computational Psychiatry

Ef Expected posterior frequency

eHGF 3-level enhanced Hierarchical Gaussian Filter for binary inputs

FFX fixed-effects

GLM General Linear Model

GRW Gaussian random walks

HGF Hierarchical Gaussian Filter

LME Log model evidence

MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo

PXP Protected exceedance probability

RFX Random effects

RL Reinforcement Learning

RT Response times

SBC Simulation-based Calibration

SPIRL Speed-incentivised associative reward learning

TAPAS Translational Algorithms for Psychiatry Advancing Science

TN Translational Neuromodeling

VB Variational Bayes

XP Exceedance probability
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	INTRODUCTION
	Psychiatry suffers from a dearth of tests that are based on biological or cognitive mechanisms . In response, computational approaches to psychiatry begun gaining attention a decade ago . A particular focus has been on generative models and their potential for inference on individual disease mechanisms, as a basis for overcoming the limitations of contemporary symptom-based diagnostic classifications .
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	Computational approaches to psychiatry encompass two main branches: Translational Neuromodeling (TN) which is concerned with the development and validation of computational assays – i.e. generative models for inferring mechanisms underlying neurophysiology, behaviour, and cognition – and Computational Psychiatry (CP) which focuses on the application of these models to clinical questions such as differential diagnosis, stratification, and treatment prediction. Generative models represent a cornerstone of TN/
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	However, there are numerous practical challenges for generative modelling. These include – but are not limited to – the choice of sensible priors for model parameters, identifiability both at the level of parameters and models, validation of the inference algorithm, as well as questions regarding model evaluation. Successfully managing these challenges is essential in order to obtain robust statistical results from Bayesian data analysis (BDA), which in turn is paramount to the success of TN/CP.
	The motivation for this paper is twofold: First, we present a novel generative model in the framework of the Hierarchical Gaussian Filter (HGF; ), a computational model for hierarchical Bayesian belief updating that has seen numerous applications in TN/CP (e.g. ). Our new generative model exploits two sources of information from behavioural responses, namely trial-wise predictions (binary responses) and associated response times (RTs). By exploiting two coupled streams of information for model inversion, we
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	Second, we provide a worked example of Bayesian workflow that may usefully guide application of generative models in TN/CP, beyond the particular examples studied in this paper. This example extends previous tutorials that discussed a workflow for modelling behavioural data, but were restricted to frequentist (maximum likelihood) estimation . We emphasise that the Bayesian workflow presented in this paper was not invented by us. Instead, it was derived from earlier proposals by others  and enriched with add
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	METHODS
	The analysis methods of this study were specified in a preregistered analysis plan (see section below for details). For consistency, we reuse text from our analysis plan in this Methods section, in adapted and extended form. We start by describing the behavioural learning task which was developed for this study. In what follows, we give a detailed summary of our modelling approach, both the development of novel response models combining different data modalities in the framework of the HGF as well as their 
	Aim 1: A quantitative comparison of response models (for the HGF) that utilise binary and continuous-valued response data in different ways.
	Aim 2: A quantitative assessment of whether (and how) parameters characterizing subject-specific learning behaviour are associated with an individual’s measured response times.
	ANALYSIS PLAN, DATA AND CODE AVAILABILITY
	A version-controlled and time-stamped analysis plan was created, detailing the analysis pipeline ex ante. The analysis plan provides a more in-depth description of the analysis protocol and is provided at . For the analysis, a custom-built pipeline was implemented in MATLAB R2019b (The MathWorks, Natick, MA, USA; code available at ). Various open-source software packages were used for the analysis such as the HGF Toolbox (v7.1) as part of the ‘Translational Algorithms for Psychiatry-Advancing Science’ ( v6.
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	BEHAVIOURAL STUDY PROCEDURE
	Participants
	In total, 91 right-handed healthy individuals (59 females, 32 males; age 24.7 ± 4.3) completed the study. The data set consists of a pilot data set (N = 23) and a main data set (N = 68). For lack of a better term, we refer to the former as a ‘pilot’ data set; however, we emphasise that from the beginning, the designated purpose of this data set was to inform the specification of priors by independent data. The size of the pilot data set was determined by feasibility and resource constraints, the size of the
	Our study applied the following exclusion criteria for participation: known psychiatric or neurological diseases (past or present), regular intake of medication (except contraceptives), current participation in other studies using pharmacological interventions or stimulation of brain nerves, and alcohol or drug intake during three days prior to the measurement.
	Additionally, we excluded measured data sets from analysis according to quality criteria that had been pre-specified in the analysis plan. These criteria included: failure to complete the task and >10 ignored (no response and feedback) or irregular (RT <0.1s) trials. We also excluded data from participants with <65% correct responses (adjusted for the probabilistic nature of the task), which is consistent with previous work using a similar task in healthy populations . Eleven of the participants were exclud
	(
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	total
	pilot
	main

	Behavioural paradigm
	Each participant attended one experimental session during which they performed the SPIRL task . In this task, participants were required to learn the probabilistic association between two fractals and a monetary reward over a period of 160 trials. In each trial, participants were asked to select one of the two displayed fractals during a response window of 1.7s. After 1.7s from the trial onset, the outcome of the trial was revealed to the participant, i.e. whether the selected fractal was associated with a 
	(
	Figure 1
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	)
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	Heitz, 2014
	Heitz, 2014
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	Figure 1A
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	The probability of reward for one of the two fractals in the SPIRL task is shown in . The black dots indicate whether the respective fractal was rewarded on a given trial (1 = reward, 0 = no reward). The reward probabilities of the two fractals were designed to be complementary (summing to 1 at any given point during the experiment). Thus, the reward probability of the second fractal was simply the mirrored trajectory of the displayed trajectory, and on every trial exactly one of the two fractals was reward
	Figure 1B
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	ANALYSIS
	Model-agnostic analyses
	The acquired behavioural data from the SPIRL task (binary responses and continuous response times) were subject to several descriptive analysis steps, mostly in the form of different visualisations of the data set. The goal of these steps was to perform a set of basic sanity checks and to identify particular characteristics of the data set. For the binary response data, adjusted correctness of the participants’ predictions (adjusted in the sense that we account for the probabilistic structure of our experim
	(
	Iglesias et al., 2021
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	Computational modelling
	For the model-based analysis, we follow the general steps of Bayesian workflow outlined in previous work  and adjusted it to our specific application at hand. Our Bayesian workflow includes the specification of an initial model space, the choice of suitable prior configurations, the choice of model inversion technique and its validation, model inversion given the empirical data set, model comparison (hypothesis testing), and model evaluation. The general steps of Bayesian workflow as well as their implement
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	Model space
	The set of models was based on hierarchical Gaussian filtering (HGF; ), a Bayesian learning model comprising a hierarchy of computation inspired by predictive coding theories of brain function . In simple terms, HGF assumes that the brain implements hierarchical Bayesian belief updating to predict the current state of the world. The layers of the HGF represent this hierarchy and track the probability of events (also called tendency) and how quickly this probability changes (called volatility). HGF is a gene
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	Further details and equations of the generative model can be found in Mathys et al. .
	(
	2011
	2011

	)

	The 3-level eHGF for binary inputs represents a concrete implementation of the meta-Bayesian ‘observing the observer’ framework, where an observation or response model serves to specify a mapping from inferred beliefs of an agent to observed responses as recorded during our experiment . The response model uses the perceptual model indirectly via its inversion . In this study, we augmented the perceptual model (eHGF) with a novel set of response models combining binary responses and continuous-valued respons
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	Mathys et al., 2014
	Mathys et al., 2014

	)

	In the eHGF, variational inversion of the agent’s model of the world (perceptual model) using Variational Bayes (VB) under a mean-field approximation and a quadratic approximation to the variational energies give rise to a set of analytical trial-by-trial update equations that resemble the general structure of Reinforcement Learning (RL) models but explicitly represent inferential uncertainty. For example, the update of the belief at the second level of the eHGF about the cue-outcome contingency takes the f
	()(1)()()2221kkkkµµσδ−=+
	()(1)()()2221kkkkµµσδ−=+

	where superscripts refer to trial indices and subscripts to the level in the hierarchy of the model. In other words, the prediction () at trial k is equal to the sum of its value at the previous trial  and a learning rate  multiplied with a prediction error term . Here the prediction error  describes the mismatch between the actual () and the predicted sensory input ()
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	where the predicted sensory input is simply a sigmoid transformation of the belief at the second level
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	Notably, in the HGF, the learning rate  is dynamic and corresponds to a function of the temporally evolving uncertainty of the agent’s belief about the cue-outcome contingency . A full account of the update equations describing the evolution of beliefs at all levels of the 3-level eHGF for binary inputs can be found in the analysis plan (Appendix A3).
	()2kσ
	()2kµ

	We defined a set of combined response models that are all paired with a 3-level eHGF for binary inputs (perceptual model). The combination of binary responses and continuous response times in these response models is accomplished by summing the log-likelihood of two individual response models, assuming independence of the two response data modalities conditional on the parameters of the perceptual model. All seven models in our model space are listed in .
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	As binary part of the response model, we used a unit-square sigmoid function mapping from the belief  at the lowest level of the eHGF that the next outcome will be 1 onto the probabilities  and  that the agent will choose response 1 or 0 (for simplicity, in the following equation we use  and we omit time indices on y and m):
	()1ˆkµ
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	Here, the parameter ζ determines the steepness of the sigmoid function and is referred to as inverse decision temperature or inverse decision noise. For reasons of comparability, the binary part was kept constant across all response models in our model space.
	For the continuous part of the response models, we used seven different variants of a general linear model (GLM) to predict the log-transformed RTs on a trial-by-trial basis. The regressors of models 1–4 (M1–M4) are belief trajectories from the perceptual model (eHGF), e.g., an individual’s estimated uncertainty about the outcome () at trial k. This was inspired by the approaches used in previous work where reaction time data had been modelled using the HGF framework . A set of alternative combined response
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	Our model space can thus be divided into 2 families based on the continuous part of the response models (since the perceptual model and the binary part of the response models were held constant). M1–M4 are ‘informed’ RT models and M5–M7 are ‘uninformed’ RT models. Note that Bayesian model comparison is based on the (log) evidence and therefore requires the data to be the same across all models. In our case, it is thus not possible to include a model that does not model RT at all in the model comparison.
	The GLM equations of M1–M7 are listed in , and a graphical representation of M1 is presented in . Concerning the first (informed) set of models, the GLM of M1 was adapted from a model used by Lawson et al.  and tailored towards the specific properties of the SPIRL task. Models M2–M4 are custom built response models with the following underlying motivation: Firstly, the goal was to reduce the number of regressors entering the GLM and hence the complexity of the models compared to M1. Secondly, the idea was t
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	By contrast, the second (uninformed) set of models, M5–M7, have response time GLMs where the regressors are independent of the perceptual model. M5 is a null model, representing the assumption that log RTs are simply noise around a constant intercept. M6 allows for a linear decay over time in the response times, and M7 corresponds to a null model with two different intercepts for correct and incorrect response trials (referring to the binary response data).
	Prior specification
	Prior elicitation. Since the central questions of the present study are addressed by Bayesian model comparison (whose central quantity, the model evidence, takes into account the models’ priors), the specification of priors is a critical step. We aimed to specify priors that lay in the range of actual human behaviour for the present task, while at the same time minimising the subjectivity involved in the choice of priors. In order to avoid problems of double-dipping, we made use of an independent data set, 
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	1. 
	1. 
	1. 
	1. 

	Inversion of M1–M7 given the pilot data set (N = 20) using initial prior means and variances. These initial prior means and variances represent the default prior configurations of the eHGF in the HGF Toolbox.
	pilot


	2. 
	2. 
	2. 

	For every model m, we defined:


	a. a new prior mean pE as the robust mean estimate over Maximum a posteriori (MAP) estimates obtained in step 1.
	m

	b. a new prior variance pC as the robust variance estimate over MAP estimates obtained in step 1.
	m

	Due to the limited size of the pilot data set, robust mean and variance estimates were computed. We used a variant of the minimum covariance determinant (MCD) method, namely the FAST-MCD algorithm developed by , as implemented in the ‘robustcov’ function in MATLAB R2019b. We refer to this new set of priors, that we estimated via the above described procedure, as empirical priors (as informed by the pilot data set). Please note that our procedure is distinct from commonly employed ‘empirical Bayesian’ proced
	(
	Rousseeuw & Van Driessen, 1999
	Rousseeuw & Van Driessen, 1999

	)

	Prior predictive checking. In order to get an intuition for the range of behaviours which can be generated by our models under the initial and empirical priors, we looked at their prior predictive distributions. More specifically, we randomly sampled 100 parameter values from the respective prior densities and simulated belief trajectories and responses. Adequacy of our chosen prior distributions was determined in a qualitative manner (visualisations) as well as in a quantitative fashion in the form of diff
	Model inversion
	We inverted the generative models using approximate Bayesian inference as implemented in the HGF Toolbox. MAP estimates are computed as the minimum of the negative log joint using gradient-based optimisation techniques. By default, the HGF Toolbox uses an optimisation algorithm from the quasi-Newton methods family (Broyden-Fletcher-Goldfarb-Shanno algorithm; BFGS) . The covariance of the posterior was obtained under a Laplace approximation to the negative log joint at the MAP. This allowed for the specifica
	(
	Broyden, 1970
	Broyden, 1970

	; 
	Fletcher, 1970
	Fletcher, 1970

	; 
	Goldfarb, 1970
	Goldfarb, 1970

	; 
	Shanno, 1970
	Shanno, 1970

	)

	It should be noted that this choice of inference technique means that we are dealing with a simplified case of BDA. That is, we only obtain a point estimate of the posterior and approximate the posterior uncertainty. An advantage of our model inversion procedure is the computational efficiency and the avoidance of concerns about convergence, as in the case of Markov Chain Monte Carlo (MCMC) procedures. Having said this, for the specific purpose of our paper, the choice of model inversion approach is not cri
	Validation of model inversion
	To examine the identifiability of parameters from the models in our model space, we performed a set of recovery analyses using synthetic data (for a tutorial introduction to recovery analyses, albeit in the context of maximum likelihood estimation, see Wilson and Collins ). Examining the identifiability (or recoverability) of parameters and models can also be seen as a test of face validity, i.e. asking whether the models actually do what they are supposed to do: allowing for veridical parameter estimates a
	(
	2019
	2019

	)

	For each model, we generated a synthetic data set (N = 100) by randomly drawing 100 samples from the empirical prior densities and plugging these values into the likelihood function. We then fit the synthetic data sets by each of the models in our model space under the respective empirical priors. Parameter recovery was assessed by visually comparing simulated parameter values to MAP estimates obtained using the data-generating model and by calculating Pearson correlation coefficients r. Model identifiabili
	sim
	(
	Rigoux et al., 2014
	Rigoux et al., 2014

	; 
	Stephan et al., 2009
	Stephan et al., 2009

	)
	famsim
	(
	Penny et al., 2010
	Penny et al., 2010

	)

	Model comparison
	After careful investigation of our model space and validation of the chosen inference algorithm, we inverted the models given the main data set in order to address the following aims:
	Aim 1. Perform a quantitative comparison of response models that utilise binary and continuous-valued response data in different ways. More specifically, we tested whether the family of informed RT models explained the collected data better than the uninformed RT model family, or vice-versa. To this and, we performed family-level RFX BMS as implemented in the VBA Toolbox. Family-level inference serves to reduce uncertainty about aspects of model structure other than the characteristic of interest . In the p
	(
	Penny et al., 2010
	Penny et al., 2010

	)
	(
	Stephan et al., 2009
	Stephan et al., 2009

	)

	For the family-level RFX BMS, we specified a uniform prior at the family level to avoid biasing our inference . We computed the posterior family probabilities which correspond to the posterior belief that family k generated the data. Additionally, we computed family XPs which correspond to the belief that family k is more likely than any other of the K families, given the data from all participants.
	(
	Penny et al., 2010
	Penny et al., 2010

	)

	Aim 2. A quantitative assessment of whether and how parameters characterising subject-specific learning behaviour were associated with an individual’s measured response times. To this end, we first needed to identify a single winning model – i.e. the model that best describes the measured data – by conducting a second RFX BMS analysis on the entire model space, this time at the level of individual models.
	Once this model had been identified and in case it belonged to the family of informed RT models, we analysed the influence of the individual regressors of its response time GLM in a second step by examining the posterior parameter estimates of the winning model. To quantify the importance of each free parameter, we tested its significance against the initial prior mean (i.e. 0) using one-sample t-tests at a significance threshold of p < 0.05, Bonferroni-corrected for the number of performed tests (i.e. free
	Model evaluation
	After we had fit our models to empirical data and performed a set of statistical tests to answer our research questions, it still remained to be evaluated whether our model(s) actually provided a good explanation of the data, i.e. an assessment of model quality in absolute terms, using posterior predictive checks . This approach is distinct from the purpose of (Bayesian) model comparison which assesses the quality of candidate models in relative terms.
	(
	van de Schoot et al., 2021
	van de Schoot et al., 2021

	)

	Specifically, we performed qualitative posterior predictive checks  by simulating new data conditional on the obtained subject-specific posteriors. For this, we used the Hessian of the negative log joint at the MAP estimate obtained during the optimisation to determine the posterior covariance matrix. This allowed us to construct an approximate multi-dimensional posterior for each model and participant. We then sampled parameter values (N = 100) from the calculated approximate posterior densities of each pa
	(
	van de Schoot et al., 2021
	van de Schoot et al., 2021

	)
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	RESULTS
	MODEL-AGNOSTIC RESULTS
	Here, we report descriptive statistics of behavioural data from N = 59 participants in our main sample. In , mean and standard deviation of trial-wise binary responses and log RTs across participants are visualised in red.  displays a trial-wise summary of percentage of incorrect responses over all participants. A histogram of log-transformed RTs is presented in . Behavioural data of individual participants can be found in the Supplementary Material (S1). A one-way ANOVA of log-transformed RTs did not revea
	main
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	Figure 4A
	Figure 4A

	Figure 4
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	COMPUTATIONAL MODELLING
	Prior specification
	A detailed treatment of the initial priors including their sufficient statistics, prior predictive distributions, and a grid search for different parameter values of the eHGF is presented in the analysis plan (Table 1, Figures 3 and A1). Here, we focus on the empirical priors which are used for the analysis of the main data set.
	In  empirical prior densities for all free parameters of M1 are shown alongside the MAP estimates from model inversion on the pilot data set (N = 20) as well as the initial prior densities. (Note that these reported empirical priors differ slightly from the specifications in the analysis plan, which is due to the fact that we are using a later version of TAPAS to run the analysis. However, qualitatively the empirical priors do not differ between the two versions.) It can be seen that the informativeness of 
	Figure 5A
	Figure 5A

	pilot

	Prior predictive checks using the empirical priors are visualized in  and .  shows the distribution of predicted belief trajectories  at the outcome level of the eHGF as well as the trial-wise frequency of simulated binary responses of M1 (N = 100). Since we assume relatively little decision noise under the empirical priors, the frequency of binary responses is higher than the average predicted belief for trials where  and vice-versa for trials where .  displays simulated log RT trajectories for M1 under th
	Figure 5B
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	Across models, our prior predictive checks using the empirical priors showed that – as expected by the construction of the model space – all our models produce similar behaviour at the level of the perceptual model and how they predict binary response data. By contrast, they differ considerably in the way they predict log RT data (see Supplementary Material Figures S2b8–S2b9). Moreover, all of them allow for a wide range of behaviour indicating that the elicited empirical prior densities are flexible enough
	Validation of computation
	Results from the family-level recovery analysis  show good recoverability of true family frequencies for the 5’000 synthetic data sets (N = 60 simulated subjects per data set). Reassuringly, both Ef as well as XP values show little to no bias towards either of the two model families.
	(
	Figure 6A
	Figure 6A

	)
	famsim

	 shows the 7 × 7 confusion matrices resulting from Individual-level model recovery analysis. All models could be identified well above chance level both when evaluating approximate LME winner frequencies as well as PXP values resulting from RFX BMS on the synthetic data set (N = 100). For the LME winner classification analysis, the balanced accuracy score is 0.66 which is clearly above 0.19 (the upper bound of the 90%-CI when assuming chance across all 7 models).
	Figure 6B
	Figure 6B

	sim

	Parameter recovery analysis of M1 is visualised in . All of the nine free parameters of M1 (two perceptual and seven response model parameters) show good recoverability. All Pearson correlations between true and recovered parameter values are highly significant (p < 0.001). Recoverability of the meta-volatility parameter (ω) of the 3-level eHGF for binary inputs is the least robust among all free parameters of M1 (r = 0.67). Detailed results from parameter recovery analysis of all models are listed in the S
	Figure 6C
	Figure 6C
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	Model comparison
	Aim 1.  shows the results of the family level RFX BMS on the main data set. The family of informed RT models is identified as the winning family (XP = 1, Ef = 0.79). In other words, we find clear evidence supporting the hypothesis that the family of informed RT models explains the collected data better (trading off accuracy and complexity) compared to models from the uninformed RT family. This demonstrates the practical utility of the family of informed RT models.
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	Aim 2.  visualizes the results of the individual model level RFX BMS on the main data set. Here, M1 is identified as the winning model (PXP = 1, Ef = 0.65), which consists of a 3-level eHGF for binary inputs combined with the unit-square sigmoid model as binary part and the Lawson-inspired log RT GLM as continuous part of the response model.  displays MAP estimates of the M1 log RT GLM regressors. Post-hoc one-sample t-tests on posterior means of the log RT GLM parameters of M1 reveal a highly significant (
	Figure 7B
	Figure 7B
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	Model evaluation
	 shows that the average binary predictions as well as the average predicted log RTs by M1 over all participants of the main data set capture the empirical data quite well. In , the trial-wise percentage of participants giving an incorrect response (inverted for true reward probabilities of 0.2 to improve visual comparability) is compared to the averaged absolute prediction error at the outcome level () of M1. This qualitative comparison serves as an example of how the low-level prediction error computed usi
	Figure 3
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	Examples of the best, average and worst fits of M1 to single-participant data in terms of the log likelihood are shown in the Supplementary Material (S1). Overall, belief trajectories at the outcome level of the eHGF seem to align well with the participants’ binary predictions. Regarding the RT fits, one can clearly see that individual log-transformed RT data is very noisy. However, a look at the averaged log RT data across participants and the averaged log RT model fits clearly shows that M1 is able to pic
	(
	Figure 3
	Figure 3

	)

	Results from posterior predictive checks of M1 are shown in  and in the Supplementary Material (S5). These allow for a qualitative assessment of the obtained single-subject posteriors. Regarding the binary response data, we can clearly see that the adjusted correctness of empirical response data is within the ranges of values covered by the individual subjects’ posterior predictive densities for most of the participants ( and Supplementary Figure S5A). Concerning the response time data, we can observe that 
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	(
	Figure 8B
	Figure 8B

	)

	DISCUSSION
	The present study provides a first application of response models combining two different data modalities in the framework of the HGF. More specifically, we developed a novel set of response models simultaneously fitting binary responses and continuous response time data during inference. Additionally, we developed and implemented an associative learning task, the SPIRL task, in which fast responses were incentivised, allowing us to model reaction times and binary responses jointly. We performed extensive s
	()1ˆkσ

	COMBINING DIFFERENT RESPONSE DATA MODALITIES FOR ROBUST INFERENCE IN THE HGF
	The first motivation for this paper was the development and application of a set of response models that combined multiple data modalities. In this way, we hoped to address issues related to parameter recovery and model identifiability in the context of the HGF, especially when dealing with applications to binary response data . We hypothesised that the combination of different data modalities should increase identifiability, both at the level of parameters and models. Recoverability of parameters should be
	(
	Harrison et al., 2021
	Harrison et al., 2021

	; 
	Iglesias et al., 2021
	Iglesias et al., 2021

	)

	Comparing the performance of the two model families against empirical data and using family level RFX BMS, we demonstrated that the data from the SPIRL task were better explained by the family of informed RT compared to the family of uninformed RT models. Moreover, RFX BMS on the individual model level revealed M1 as the clearly winning model, providing the best explanation for the empirical data set. Notably, it is not possible to directly compare multimodal response models to binary response models when u
	Harrison et al., 2021
	Harrison et al., 2021
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	Our analysis of the regression weights of the log RT GLM of M1 revealed a significant influence of the parameter β which scales the contribution of the outcome uncertainty  in the eHGF. Here, we refer to outcome uncertainty as the informational uncertainty at the level of the outcome, which describes the irreducible uncertainty associated with any type of probabilistic prediction. This result is consistent with the findings of Lawson et al.  who applied a very similar combination of an HGF perceptual model 
	2
	()1ˆkσ
	(
	2017
	2017

	)
	(
	Bonnet & Ars, 2008
	Bonnet & Ars, 2008

	)

	Harnessing the information of an additional data modality during statistical inference is not a novel idea. First examples of similar approaches exist in the context of sequential sampling models such as drift-diffusion models (DDMs)  which have been combined with RL models     . However, in the literature, models combining binary choices and continuous response times are far less common than simple binary observation models. Moreover, our study focuses on a specific generative modelling framework, the HGF,
	(
	Kraemer et al., 2021
	Kraemer et al., 2021

	; 
	Pedersen et al., 2017
	Pedersen et al., 2017

	; 
	Shahar 
	Shahar 

	et al., 2019
	et al., 2019

	)
	(
	Ballard & McClure, 2019
	Ballard & McClure, 2019

	;
	Clithero, 2018
	Clithero, 2018

	;
	Loeys et al., 2011
	Loeys et al., 2011

	;
	McDougle & Collins, 2021
	McDougle & Collins, 2021

	;
	 
	Mileti
	ć
	et al., 2021

	)

	The SPIRL task was designed to incentivise both correct as well as fast responses. There is a rich body of literature on the speed-accuracy trade-off . The fact that outcomes were always presented after a fixed duration (1.7s) and independently of response times represents a potential limitation of our current task since previous work has shown stronger effects on RTs for response time dependent outcome delivery . In future research, it may be possible to boost effects on RTs by including response time depe
	(
	Heitz, 2014
	Heitz, 2014

	)
	(
	Hein et al., 2021
	Hein et al., 2021

	; 
	Tecilla et al., 2023
	Tecilla et al., 2023

	)

	There are some limitations to our modelling approach. First of all, for the specification of our model space we assumed independence between the two response data modalities (binary responses and response times) conditional on the parameters of the perceptual model. For future applications, one may consider finessing the current formulation. Second, MAP inference is a rather simplistic technique for Bayesian inference where the posterior uncertainty needs to be approximated post-hoc. Alternatives would be V
	The presented combined response models for the HGF framework have potential for applications in a variety of tasks and domains. In principle, our modelling approach can be applied to any two different data modalities of interest, e.g. behavioural, physiological, neurophysiological data, etc. However, it is important that the data modalities of interest contain relevant information that can be picked up by the model. This can be assessed e.g. by comparing different models with a null model in a candidate app
	(
	den Ouden et al., 2009
	den Ouden et al., 2009

	)

	We hope that the use of combined response models can be particularly useful in TN/CP. Typical constraints for the design of clinically applicable paradigms include limited number of trials and complexity constraints for tasks, which limit the number of data points and ultimately constrain inference. Added information from a second data modality may compensate for these limitations and thus help improve the robustness of results.
	BAYESIAN WORKFLOW FOR GENERATIVE MODELLING IN TN/CP
	The second motivation for this paper was to highlight the key ingredients of Bayesian workflow and illustrate its application. In TN/CP, generative models not only represent central tools for inference on disease-relevant cognitive and neurophysiological mechanisms  but also frequently serve to provide low-dimensional and mechanistically interpretable features for machine learning (generative embedding; ). The robustness of results from generative modelling is therefore of major importance in TN/CP and can 
	(
	Stephan & Mathys, 2014
	Stephan & Mathys, 2014

	)
	Stephan et al., 2017
	Stephan et al., 2017


	In BDA, the choice of priors plays an important role for identifiability, reliability and predictive validity of model-fitting results . Yet, the importance of priors is easily overlooked and little attention is usually devoted to systematic description and analysis thereof. Similarly, validation of the chosen inference technique (including the effects of approximations and the choice of optimisation algorithms) as well as model evaluation are often neglected. This is especially critical in TN/CP, since the
	(
	Gershman, 2016
	Gershman, 2016

	)

	Importantly, we did not invent the Bayesian workflow presented here; instead, it was derived from previous proposals (e.g. ) and augmented by additional components, e.g. Bayesian model selection at the family level . These steps are summarised visually in  and include the specification of an initial model space, prior elicitation and prior predictive checking, the choice of a Bayesian inference algorithm and concurrent validation of computation, model comparison procedures, and model evaluation.
	Betancourt, 2020
	Betancourt, 2020

	; 
	Gelman et al., 2020
	Gelman et al., 2020

	; 
	Schad et al., 2020
	Schad et al., 2020

	; 
	van de 
	van de 

	Schoot et al., 2021
	Schoot et al., 2021

	(
	Penny et al., 2010
	Penny et al., 2010

	)
	Figure 2
	Figure 2


	Using the well-known Bayesian workflow by Gelman and colleagues  for comparison, our approach introduces several extensions. First, our procedure for elicitation of prior distributions involves an independent data set, allowing us to obtain a set of data-informed priors representative of actual human behaviour while at the same time avoiding problems of double-dipping. Second, the analysis was pre-specified in its entirety, (the only change concerned using a more current version of TAPAS, a deviation which 
	(
	2020
	2020

	)
	(
	Nosek et al., 2018
	Nosek et al., 2018

	)

	We are aware that the proposed Bayesian workflow is not perfectly generalizable to every application of generative models in TN/CP. It should rather be seen as a blueprint that can be adapted and extended to specific cases of generative modelling. In this work, we specified our model space in a hypothesis-driven fashion and we used an independent data set for the elicitation of prior distributions. However, there are scenarios where obtaining a representative pilot data set may be challenging (e.g. studies 
	Furthermore, there are important elements of Bayesian workflow which we did not implement and discuss here in detail. For example, there are principled (but computationally expensive) approaches to validating Bayesian inference algorithms such as simulation-based calibration (SBC) . Also, when using sampling-based approximations to the posterior, additional diagnostics (e.g. concerning convergence) are required. Previous papers on BDA provide detailed discussions of these (and other) topics .
	(
	Talts et al., 2018
	Talts et al., 2018

	)
	(
	Betancourt, 2020
	Betancourt, 2020

	; 
	Gelman et al., 2013
	Gelman et al., 2013

	, 
	2020
	2020

	; 
	Schad et al., 
	Schad et al., 

	2020
	2020

	; 
	van de Schoot et al., 2021
	van de Schoot et al., 2021

	)

	In summary, this paper provided an illustrative application of Bayesian workflow in the context of an associative learning task that allowed for simultaneously modelling two behavioural readouts. We hope that this example will help pave the way towards standard adoption of Bayesian workflow and contributes to efforts of improving the transparency and robustness of results in TN/CP.
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	ABSTRACT
	ABSTRACT
	Computational (generative) modelling of behaviour has considerable potential for clinical applications. In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, Bayesian workflow has been suggested which, however, has rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of Bayesian workflow in the context of a typical application scenario for TN/CP.
	This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary responses and are typically univariate. This poses challenges for statistical inference due to the limited information contained in such data. We present a novel set of response models that allow for simultaneous 
	Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue that adopting Bayesian workflow for generative modelling helps increase the transparency and robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.

	Figure
	Figure 1 The speed-incentivised reward learning (SPIRL) task. A shows the trial structure of the SPIRL task protocol. A yellow and a green fractal were presented on every trial together with a time bar indicating the remaining time of the 1.7s long response window. The participants had to predict on each trial, which fractal would be rewarded monetarily. After the response window, the trial outcome was revealed (reward/no reward) concurrently with the start of the new response window of the next trial. In B
	Figure 1 The speed-incentivised reward learning (SPIRL) task. A shows the trial structure of the SPIRL task protocol. A yellow and a green fractal were presented on every trial together with a time bar indicating the remaining time of the 1.7s long response window. The participants had to predict on each trial, which fractal would be rewarded monetarily. After the response window, the trial outcome was revealed (reward/no reward) concurrently with the start of the new response window of the next trial. In B

	Figure
	Figure 2 Bayesian workflow for generative modelling in Computational Psychiatry. The general steps of Bayesian workflow are indicated by grey boxes with labels. These include the specification of a model space, prior specification, model inversion and validation of computation, model comparison as well as model evaluation. The flowchart represents how the concrete analyses steps of our application map onto the general framework of Bayesian workflow. Above the dashed line are analysis steps that involve the 
	Figure 2 Bayesian workflow for generative modelling in Computational Psychiatry. The general steps of Bayesian workflow are indicated by grey boxes with labels. These include the specification of a model space, prior specification, model inversion and validation of computation, model comparison as well as model evaluation. The flowchart represents how the concrete analyses steps of our application map onto the general framework of Bayesian workflow. Above the dashed line are analysis steps that involve the 

	Figure 3 Graphical model representation and example belief trajectories. In the left part of the figure, a schematic representation of the generative model of the 3-level eHGF for binary inputs (perceptual model) is presented on top. Below, the response data modalities are visualised (response model). Shaded circles represent known quantities (inputs shaded black, response data shaded red). Unshaded circles represent estimated time-independent parameters (black circles) and time-varying states with trial in
	Figure 3 Graphical model representation and example belief trajectories. In the left part of the figure, a schematic representation of the generative model of the 3-level eHGF for binary inputs (perceptual model) is presented on top. Below, the response data modalities are visualised (response model). Shaded circles represent known quantities (inputs shaded black, response data shaded red). Unshaded circles represent estimated time-independent parameters (black circles) and time-varying states with trial in
	Table 1
	Table 1

	main
	biny
	1ˆµ


	Figure
	Table 1 Model Space. All seven models in our model space are composed of a perceptual (Prc) model and an observation (Obs) or response model. The perceptual model as well as the binary part of the response model is held constant across all seven models. The equations of the log RT GLMs (continuous part of the response model) of M1–M4 (family of informed RT models) contain belief trajectories of the perceptual model as regressors. The update equations for the perceptual model (eHGF) are listed in the analysi
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	Figure
	Figure 4 Binary responses and continuous log-transformed response times. In A, the red line represents a trial-wise summary of percentage of incorrect responses (inverted for true probabilities 0.2 indicated by the black line) over all participants (N = 59) and the average absolute prediction error about the trial outcome () of M1 in red. Black dots represent the reward of fractal A on each trial (1 = reward, 0 = no reward) and the black line shows the underlying probability structure of the task. B shows t
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	Figure 5 Prior configurations of M1. A shows the empirical prior densities for each free parameter of M1 (solid line) as estimated using MAP estimates (black dots) obtained from a separate pilot data set (N = 20) using the initial priors (dashed lines). A detailed description of M1 can be found in  and in the main text. Prior predictive distributions under the empirical priors of M1 are displayed for both response data modalities. In B on the left, belief trajectories about the outcome () at the lowest leve
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	Figure
	Figure
	Figure 6 Validation of Computation. A shows results from family-level recovery analysis comparing Ef (left) and XP (right) values with true family frequencies. B depicts results from individual model level recovery analysis. 7 × 7 confusion matrices for LME winner frequencies (left) and PXP scores (right) are shown with data generating models on the y-axis and recovered models on the x-axis. C visualizes simulated vs. estimated values of all free parameters of M1 (parameter recovery). Correlation between si
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	Figure 7 Hypothesis testing. A shows the results of the family level RFX BMS (Efs on the left, XPs on the right) with the informed RT family clearly outperforming the uninformed RT model family. B displays Efs (left) and PXPs (right) resulting from individual model level RFX BMS. M1 can be identified as the clear winning model. C shows raincloud plots of the MAP estimates of the M1 GLM regressors (generated using the RainCloudPlots library). Fine black vertical lines indicate the initial prior mean values (
	Figure 7 Hypothesis testing. A shows the results of the family level RFX BMS (Efs on the left, XPs on the right) with the informed RT family clearly outperforming the uninformed RT model family. B displays Efs (left) and PXPs (right) resulting from individual model level RFX BMS. M1 can be identified as the clear winning model. C shows raincloud plots of the MAP estimates of the M1 GLM regressors (generated using the RainCloudPlots library). Fine black vertical lines indicate the initial prior mean values (
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	Figure
	Figure 8 Posterior predictive checks for M1. Data from three participants of the main data set are shown. Participants were chosen according to goodness of model fit of M1, i.e. participant 21 with a high log likelihood value, participant 29 showing average goodness of fit and participant 5 showing the worst fit. A displays adjusted correctness of binary responses for these participants in red. Blue circles are the simulated adjusted correctness values resulting from sampled parameter values of the subject-
	Figure 8 Posterior predictive checks for M1. Data from three participants of the main data set are shown. Participants were chosen according to goodness of model fit of M1, i.e. participant 21 with a high log likelihood value, participant 29 showing average goodness of fit and participant 5 showing the worst fit. A displays adjusted correctness of binary responses for these participants in red. Blue circles are the simulated adjusted correctness values resulting from sampled parameter values of the subject-
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